首页> 外国专利> Boolean logic optimization in majority-inverter graphs

Boolean logic optimization in majority-inverter graphs

机译:多数逆变器图中的布尔逻辑优化

摘要

We present a Boolean logic optimization framework based on Majority-Inverter Graph (MIG). An MIG is a directed acyclic graph consisting of three-input majority nodes and regular/complemented edges. Current MIG optimization is supported by a consistent algebraic framework. However, when algebraic methods cannot improve a result quality, stronger Boolean methods are needed to attain further optimization. For this purpose, we propose MIG Boolean methods exploiting the error masking property of majority operators. Our MIG Boolean methods insert logic errors that strongly simplify an MIG while being successively masked by the voting nature of majority nodes. Thanks to the data-structure/methodology fitness, our MIG Boolean methods run in principle as fast as algebraic counterparts. Experiments show that our Boolean methodology combined with state-of-art MIG algebraic techniques enable superior optimization quality. For example, when targeting depth reduction, our MIG optimizer transforms a ripple carry adder into a carry look-ahead one. Considering the set of IWLS'05 (arithmetic intensive) benchmarks, our MIG optimizer reduces by 17.98% (26.69%) the logic network depth while also enhancing size and power activity metrics, with respect to ABC academic optimizer. Without MIG Boolean methods, i.e., using MIG algebraic optimization alone, the previous gains are halved. Employed as front-end to a delay-critical 22-nm ASIC flow (logic synthesis+physical design) our MIG optimizer reduces the average delay/area/power by (15.07%, 4.93%, 1.93%), over 27 academic and industrial benchmarks, as compared to a leading commercial ASIC flow.
机译:我们提出了基于多数-逆变器图(MIG)的布尔逻辑优化框架。 MIG是由三输入多数节点和规则/互补边组成的有向无环图。一致的代数框架支持当前的MIG优化。但是,当代数方法不能提高结果质量时,需要使用更强大的布尔方法来实现进一步的优化。为此,我们提出了利用多数运算符的错误屏蔽属性的MIG布尔方法。我们的MIG布尔方法会插入逻辑错误,从而极大地简化了MIG,同时又被多数节点的投票性质掩盖了。由于数据结构/方法的适用性,我们的MIG布尔方法在原理上与代数方法一样快。实验表明,我们的布尔方法与最新的MIG代数技术相结合,可提供卓越的优化质量。例如,当针对深度减小时,我们的MIG优化器将波纹进位加法器转换为提前进位的加法器。考虑到一组IWLS'05(算术密集型)基准,相对于ABC学术优化器,我们的MIG优化器减少了逻辑网络深度的17.98%(26.69%),同时还增强了大小和功耗活动指标。如果没有MIG布尔方法,即仅使用MIG代数优化,以前的收益将减半。作为延迟关键的22 nm ASIC流程(逻辑综合+物理设计)的前端,我们的MIG优化器将超过27个学术和工业领域的平均延迟/面积/功耗降低了(15.07%,4.93%,1.93%)与领先的商业ASIC流程相比的基准。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号