首页> 中国专利> 一种特形微织构缸套及其优化设计方法

一种特形微织构缸套及其优化设计方法

摘要

本发明提供了一种特形微织构缸套及其优化设计方法,包括:缸套;在缸套内表面上设置有椭圆开口偏置类抛物线微织构,且椭圆开口偏置类抛物线微织构的尺寸和空间分布参数可根据稳定发动机转速下缸套位置的不同而变化;结合响应面和模拟退火算法对缸套表面微织构的长半轴、短半轴、偏置量、深度和面积占有率进行优化设计,得到摩擦系数最小、承载压强最大的最优微织构参数。此外,本发明在缸套表面加工的最优微织构能够储存一部分润滑油,提高油膜承载力,改善摩擦副润滑减摩性能,极大提高了机械效率,延长了发动机工作寿命。

著录项

  • 公开/公告号CN114912225A

    专利类型发明专利

  • 公开/公告日2022-08-16

    原文格式PDF

  • 申请/专利权人 辽宁工程技术大学;

    申请/专利号CN202210640031.8

  • 申请日2022-06-08

  • 分类号G06F30/17(2020.01);G06F30/28(2020.01);G06F119/04(2020.01);G06F119/14(2020.01);

  • 代理机构

  • 代理人

  • 地址 123000 辽宁省阜新市细河区中华路47号

  • 入库时间 2023-06-19 16:25:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-13

    实质审查的生效 IPC(主分类):G06F30/17 专利申请号:2022106400318 申请日:20220608

    实质审查的生效

说明书

技术领域

本发明涉及工程机械领域,具体而言,涉及一种特形微织构缸套及其优化设计方法。

背景技术

随着发动机强化指标的不断提高,发动机的摩擦学问题更加突出,因此需要采用合理的结构设计来增强发动机缸套的摩擦磨损性能,延长缸套的工作寿命和可靠性。

自20世纪80年代,表面织构技术便应用于缸套表面且被证明能够显著改善活塞环/缸套摩擦副的摩擦学性能,但由于发动机缸套工作条件的复杂性使得对于缸套表面微织构的研究不应仅仅是微织构的特征类型和几何形状,还应包括缸套的工作条件、纹理形状、分布、多参数优化等。

本发明提供了一种特形微织构缸套及其优化设计方法,在缸套内表面上设置有椭圆开口偏置类抛物线微织构,且椭圆开口偏置类抛物线微织构的尺寸和空间分布参数可根据稳定发动机转速下缸套位置的不同而变化;结合响应面和模拟退火算法对缸套表面微织构的长半轴、短半轴、偏置量、深度和面积占有率进行优化设计,得到摩擦系数最小、承载压强最大的最优微织构参数;同时,缸套表面的微织构能够储存一部分润滑油,提高油膜承载力,改善摩擦副润滑减摩性能,延长发动机的工作寿命。

发明内容

一种特形微织构缸套及其优化设计方法,包括缸套本体(1),所述缸套本体(1)内表面上设置有椭圆开口偏置类抛物线微织构,且椭圆开口偏置类抛物线微织构的尺寸和空间分布参数可根据稳定发动机转速下缸套位置的不同而变化,以满足发动机运行过程中对不同缸套位置摩擦磨损性能的差异性要求,包括如下步骤:

步骤1:CFD仿真边界条件的确定:根据所要织构区域在发动机缸套中的位置,选取用于CFD分析的压力和速度;

步骤2:未织构缸套CFD仿真:为了与最优微织构参数模型的摩擦磨损性能对比,建立相应未织构缸套模型进行CFD仿真分析并得到其摩擦系数和承载压强;

步骤3:试验设计:采用中心复合试验设计方法得到后续优化设计的试验设计表;

步骤4:带织构缸套CFD仿真:按照试验设计表依次进行CFD仿真分析并得到各试验组的摩擦系数和承载压强;

步骤5:建立优化数学模型:根据试验设计表建立以摩擦系数最小、承载压强最大为目标的缸套表面微织构优化数学模型;

步骤6:表面最优微织构参数的确定:根据建立的优化数学模型并结合模拟退火算法进行优化设计,得到最优微织构的长半轴、短半轴、偏置量、深度和面积占有率。

作为本发明优选的,所述的一种特形微织构缸套及其优化设计方法,椭圆开口偏置类抛物线微织构长半轴

作为本发明优选的,所述的一种特形微织构缸套及其优化设计方法,采用CFD方法对微织构缸套进行分析能更准确的模拟缸套工作环境,从而得到基于服役条件的缸套本体(1)表面微织构参数。

作为本发明优选的,所述步骤2取内径D为102mm的未织构缸套本体(1)、外径

作为本发明优选的,所述步骤3采用中心复合试验设计方法得到包含椭圆开口偏置类抛物线微织构长半轴

微织构的面积占有率

其中:

作为本发明优选的,所述步骤4取内径D为102mm的缸套本体(1)和外径

作为本发明优选的,所述步骤5建立的椭圆开口偏置类抛物线微织构的优化数学模型为:

其中:

本发明有益效果在于:

本发明提供了一种特形微织构缸套及其优化设计方法,在缸套内表面上设置有椭圆开口偏置类抛物线微织构,且椭圆开口偏置类抛物线微织构的尺寸和空间分布参数可根据稳定发动机转速下缸套位置的不同而变化;结合响应面和模拟退火算法对缸套表面微织构的长半轴、短半轴、偏置量、深度和面积占有率进行优化设计,得到摩擦系数最小、承载压强最大的最优微织构参数;同时,缸套表面的微织构能够储存一部分润滑油,提高油膜承载力,改善摩擦副润滑减摩性能,延长发动机的工作寿命。

附图说明:

图1是椭圆开口偏置类抛物线微织构周向分布示意图;

图2是椭圆开口偏置类抛物线微织构分布区域示意图;

图3是椭圆开口偏置类抛物线微织构参数示意图;

图4是活塞环和织构化缸套切分示意图;

图中:1、缸套;2、活塞环;3、润滑油。

具体实施方式:

下面结合附图和具体的实施例对本发明做进一步说明。

如图1所示,在缸套表面加工椭圆开口偏置类抛物线微织构,且椭圆开口偏置类抛物线微织构的尺寸和空间分布参数可根据稳定发动机转速下缸套位置的不同而变化。

为了说明本发明中缸套不同区域微织构参数的确定方法,取如图2所示距上止点

本实施例中,一种特形微织构缸套及其优化设计方法,包括如下步骤:

步骤1:CFD仿真边界条件的确定:根据所要织构区域在发动机缸套中的位置,选取用于CFD分析的压力和速度;

由发动机工作特点可知此示例性实施例的微织构区域处于低速低压区,即CFD边界条件可取:进口压力为0.4MPa、出口压力为0.1MPa、发动机转速为1500r/min(此时活塞环移动速度为3.4m/s);润滑油密度

步骤2:未织构缸套CFD仿真:为了与最优微织构参数模型的摩擦磨损性能对比,建立相应未织构缸套模型进行CFD仿真分析并得到其摩擦系数和承载压强;

取内径为102mm的未织构缸套本体(1)、外径为101.99mm的活塞环(2)沿圆周方向以

步骤3:试验设计:采取中心复合试验设计方法得到后续优化设计的试验设计表;

采用中心复合试验设计得到包含如图3所示的椭圆开口偏置类抛物线微织构长半轴

微织构的面积占有率

其中:

步骤4:带织构缸套CFD仿真:按照试验设计表依次进行CFD仿真分析并得到各试验组的摩擦系数和承载压强;

取如图4所示的内径D为102mm的缸套本体(1)和外径

步骤5:建立优化数学模型:根据试验设计表建立以摩擦系数最小、承载压强最大为目标的缸套表面微织构优化数学模型;

通过试验设计表数据分别建立摩擦系数和承载压强的数学模型如下公式所示:

建立以摩擦系数最小、承载压强最大为目标并考虑微织构各因素取值区间为约束条件的优化数学模型如下公式所示:

其中:

步骤6:表面最优微织构参数的确定:根据建立的优化数学模型并结合模拟退火算法进行优化设计,得到最优微织构的长半轴、短半轴、偏置量、深度和面积占有率。

通过模拟退火算法求解优化数学模型后得到摩擦系数最小、承载压强最大的最优微织构参数:长半轴为390

综上所述,本发明提供了一种特形微织构缸套及其优化设计方法,在缸套内表面上设置有椭圆开口偏置类抛物线微织构,且椭圆开口偏置类抛物线微织构的尺寸和空间分布参数可根据稳定发动机转速下缸套位置的不同而变化;结合响应面和模拟退火算法对缸套表面微织构的长半轴、短半轴、偏置量、深度和面积占有率进行优化设计,得到摩擦系数最小、承载压强最大的最优微织构参数;同时,缸套表面的微织构能够储存一部分润滑油,提高油膜承载力,改善摩擦副润滑减摩性能,延长发动机的工作寿命。

尽管已经示出和描述了本发明的具体实施例,但本发明的保护范围并不局限于此,对于任何熟悉本领域的技术人员而言,可理解在不脱离本发明原理和精神的情况下对实施例进行多种变化、修改、替换和变形。因此,本发明的保护范围应以权利要求的保护范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号