首页> 中国专利> 一种基于图像识别快速定位泄漏点的方法

一种基于图像识别快速定位泄漏点的方法

摘要

本发明公开了一种基于图像识别快速定位泄漏点的方法,该方法通过输入原始管道的图像数据,利用图像分割算法对原始管道图像进行分割,生成图像的不同初始化区域,对不同初始化区域的原始管道图像数据,依次进行均值、样本方差、标准化处理;利用图像极值点的检测方法对管道图像进行特征提取,利用特征融合算法对特征提取的结果,把相同管道图像聚合而不同管道图像进行分离,进行图像的相似度判断定位出泄漏点的位置,该方法是在现有技术的基础上判断相邻区域图像的相似性迅速找到管道的泄漏点,操作简单可迅速对整条管道进行检测,在管道安装时在电脑系统匹配该方法中可以实现全部泄漏过程的自动化过程,节约了人力成本。

著录项

  • 公开/公告号CN114581440A

    专利类型发明专利

  • 公开/公告日2022-06-03

    原文格式PDF

  • 申请/专利权人 中用科技有限公司;

    申请/专利号CN202210477646.3

  • 发明设计人 江大白;汪刚;赵建标;

    申请日2022-05-05

  • 分类号G06T7/00;G06V10/74;G06V10/80;G06V10/46;G06V10/50;G06K9/62;

  • 代理机构合肥洪雷知识产权代理事务所(普通合伙);

  • 代理人孙小华

  • 地址 230000 安徽省合肥市经济技术开发区宿松路3963号智能装备科技园E栋12层

  • 入库时间 2023-06-19 15:32:14

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-06-03

    公开

    发明专利申请公布

说明书

技术领域

本发明涉及管道泄漏检测技术领域,尤其涉及一种基于图像识别快速定位泄漏点的方法。

背景技术

在工业生产过程中,经常会使用管道进行气体或者液体的输送,因为管道输送不仅运输量大、连续、迅速、经济、安全、可靠、平稳以及投资少、占地少、费用低,且可实现自动控制,所以应用十分广泛。

在管道输送的过程中,气体或者液体长时间与管道壁面接触,会造成磨损和腐蚀,或者管道的接缝处焊接强度下降,从而导致管道出现泄露的情况。一旦出现了气体或者液体的泄露,一方面会造成原料的浪费,成本的增加;另一方面,尤其是易燃易爆的化工原料,一旦有管道泄漏发生,直接或间接的影响人们的生活和环境污染,更严重的会造成人员伤亡等。

针对存在的管道泄露问题,传统的做法是定时安排专职人员去巡检,并记录相关的巡检情况,发现泄露的点位,巡检人员还需要及时地进行汇报。但是,这会存在一些问题:一、巡检人员在巡检时需要携带多种工具,往往需要几个人进行配合,会增加较多的人力成本;二、由于管道往往跨度较长,安装位置比较高,在巡检过程中,巡检人员需要花费较多的时间,巡检率较低,且容易造成遗漏。

如何搭建高效、稳定的管道泄漏检测模型,通过采集的信号进行实时检测管道状况,从而使管道运输网系统能够快速、可靠地检测是否发生泄漏的方法是管道泄漏检测的一个研究热点。现有的研究多是利用负压波法,通过压力信号的变化和泄漏点产生的负压波形成的时间差,从而实现泄漏检测,该方法针对于小泄漏检测识别率低,效果达不到预期效果。在面对管道运输网系统复杂性、稳定性等问题时,无法高效、准确的实时检测管道发生泄漏的情况,还需要进一步深入的研究。

发明内容

为了克服现有技术存在的缺点与不足,本发明提供一种基于图像识别快速定位泄漏点的方法。

本发明所采用的技术方案是,该方法步骤为:

步骤S1:输入原始管道的图像数据;

步骤S2:利用图像分割算法对原始管道图像进行分割,生成图像的不同初始化区域

步骤S3:对不同初始化区域的原始管道图像数据,依次进行均值、样本方差、标准化处理;

步骤S4:利用图像极值点的检测方法对管道图像进行特征提取,并用尺度不变特征转换描述子对管道图像的局部特征进行表示,分为四步:检测管道图像关键点、精确定位管道泄漏关键点、关键点分配主方向、计算尺度不变特征转换描述子;

步骤S5:利用特征融合算法对特征提取的结果,把相同管道图像聚合而不同管道图像进行分离;

步骤S6:选择管道图像的相邻区域,并将两块相邻区域进行匹配(F

步骤S7:若Y≠0,令y(F

步骤S8:迭代步骤S6和步骤S7,直到Y=0;

步骤S9:从所有区域中定位出泄漏点的位置。

进一步地,所述图像分割算法,利用高斯马尔可夫随机场模型对原始管道图像进行建模,模型的表达式为:

其中,B表示原始管道图像,d表示原始管道图像中一截管道的位置,γ表示相邻位置,泄漏点的位置B(d)=B

原始管道图像B用高斯马尔可夫随机场模型模拟,B

其中,η

其中,e

所述前景区域的灰度均值表达式为:

其中,G表示为海维赛德函数,f(n)表示观测图像;

所述背景区域的灰度均值表达式为:

其中,f(n)表示观测图像,计算迭代e

进一步地,所述均值,表达式为:

其中,

所述样本方差,表达式为:

其中,

所述标准化处理,表达式为:

其中,

进一步地,所述特征提取,包括检测管道图像关键点、精确定位管道泄漏关键点、关键点分配主方向、计算尺度不变特征转换描述子;

检测管道图像关键点,表达式为:

其中,符号*表示卷积,H(j,k,φ)表示管道图像关键点结果,I(j,k,φ)表示尺度φ可变高斯函数,L(j,k)表示尺度空间,j,k表示管道图像的像素点横纵坐标;

其中,φ表示尺度空间因子,利用H(j,k,φ)检测到管道图像的稳定关键点,定义DoG尺度空间为:

其中,M(j,k,φ)表示不同尺度的空间,p表示尺度空间系数。

进一步地,所述精确定位管道泄漏关键点,包括去除管道图像的边缘响应点和去除低对比度点,获取关键点处的拟和函数。

进一步地,所述关键点分配主方向,以关键点为中心的邻域窗口内进行采样,并计算采样点的梯度方向角,表达式为:

其中,j,k表示管道图像的像素点横纵坐标,

进一步地,所述计算尺度不变特征转换描述子,步骤为:

①以每个关键点为中心,将管道图像坐标X轴旋转到尺度不变特征转换关键点的主方向上;

②以每个关键点为中心分割成子区域,在每个子区域上计算高斯加权梯度方向角直方图,绘制每个梯度方向的累加值,即可形成一个种子点。

进一步地,所述步骤S5,边缘特征融合算法:

其中,z

其中,

进一步地,所述相似度,建立相似度函数的表达式为:

其中,F,G表示两张相邻的管道图像,E表示所有经过边缘特征融合的管道图像合集,r

本发明通过提出一种基于图像识别快速定位泄漏点的方法通过对管道图像处理判断出泄漏点,该方法是在现有技术的基础上,利用图像极值点的检测方法对管道图像进行特征提取,可以迅速的识别图像特征,并进行提取,同时利用特征融合算法完成图像的分离,最后判断相邻区域图像的相似性迅速找到管道的泄漏点,该方法操作简单可迅速对整条管道进行检测,判断出泄漏点,在管道安装时在电脑系统匹配该方法中可以实现全部泄漏过程的自动化过程,节约了人力成本。

附图说明

图1为本发明总体步骤流程图;

图2为本发明的精确定位管道泄漏关键点流程图;

图3为本发明的图像相似度计算流程图。

具体实施方式

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合,下面结合附图和有具体实施例对本申请作进一步详细说明。

如图1所示,一种基于图像识别快速定位泄漏点的方法,该方法步骤为:

步骤S1:利用高清摄像头对管道进行拍摄,摄像头每隔5米对管道进行一次采样拍摄,对同距离管道的向阳与背阳部分同时进行采样,在电脑系统或者云端输入原始管道的图像数据,将同距离管道的向阳与背阳的图像设置为一组图像;

步骤S2:将同距离管道的向阳与背阳的一组图像组利用图像分割算法对原始管道图像进行分割,分割的目的是为了后续对管道图像进行更加细微的特征提取,将分割后的图像生成不同初始化区域

步骤S3:对不同初始化区域的原始管道图像数据,依次进行均值、样本方差、标准化处理,该步骤的目的是判断每张管道图像的数据格式与数据量是否达到特征提取的标准,为了图像的特征提取提供统一的数据格式;

步骤S4:利用图像极值点的检测方法对管道图像进行特征提取,并用尺度不变特征转换描述子对管道图像的局部特征进行表示,分为四步:检测管道图像关键点、精确定位管道泄漏关键点、关键点分配主方向、计算尺度不变特征转换描述子;其中检测管道图像关键点是依据历史经验对每张图像中容易出现泄漏点的部位首先进行检测;精确定位管道泄漏关键点是对关键点检查完成后其余图像点进行全部检测,精确定位出该图像中所有的泄漏点;关键点分配主方向,是以关键点为中心对周围所有的点进行再次检测,判断关键点一定半径范围内是否有泄漏出现,采用的是梯度方向角直方图的形式;计算尺度不变特征转换描述子,以每个关键点为中心分割成子区域,在每个子区域上计算高斯加权梯度方向角直方图,绘制每个梯度方向的累加值,即可形成一个种子点,利用种子点再次检测图像中的泄漏点;

步骤S5:根据特征融合算法对特征提取的结果,把相同管道图像聚合而不同管道图像进行分离,泄漏点的特征图像因为泄漏原因以及气候的变化会出现不同的表现方式,特征融合的目的是为了把每次出现泄漏点的特征图像进行更新,以便于在下次管道检测时,可以迅速的判断出泄漏点;

步骤S6:在管道周围安装带有红外成像的摄像头,或者采用带有红外成像无人机对管道进行视频数据采集,因为泄露的气体有可能是无色的,如果只通过传统的摄像头无法监测到,必须得使用带有红外成像的摄像设备,所获得的数据是红外热成像图像;选择管道红外热成像图像的相邻区域,并将两块相邻区域进行匹配(F

步骤S7:若Y≠0,令y(F

步骤S8:迭代步骤S6和步骤S7,直到Y=0,因为出现泄漏在图像上的表现形式为出现漏点或漏缝,当有漏点或漏缝出现时的图像与完好管道图像的相似度是完全不一样的,所以当Y=0时即可判断出泄漏的出现;

步骤S9:从所有区域中定位出泄漏点的位置,对所有的管道图像进行步骤S2至步骤S8,即可对管道进行全部的检测,找出所有的泄漏点。

在步骤S2中,图像分割算法,利用高斯马尔可夫随机场模型对原始管道图像进行建模,模型的表达式为:

其中,B表示原始管道图像,d表示原始管道图像中一截管道的位置,γ表示相邻位置,泄漏点的位置B(d)=B

原始管道图像B用高斯马尔可夫随机场模型模拟,B

其中,η

其中,e

前景区域的灰度均值表达式为:

其中,G表示为海维赛德函数,f(n)表示观测图像;

背景区域的灰度均值表达式为:

其中,f(n)表示观测图像,计算迭代e

在步骤S3中,均值表达式为:

其中,

样本方差表达式为:

其中,

标准化处理表达式为:

其中,

在步骤S4中特征提取算法包括,检测管道图像关键点、精确定位管道泄漏关键点、关键点分配主方向、计算尺度不变特征转换描述子;

检测管道图像关键点的表达式为:

其中,符号*表示卷积,H(j,k,φ)表示管道图像关键点结果,I(j,k,φ)表示尺度φ可变高斯函数,L(j,k)表示尺度空间,j,k表示管道图像的像素点横纵坐标;

其中,φ表示尺度空间因子,利用H(j,k,φ)检测到管道图像的稳定关键点,定义DoG尺度空间为:

其中,M(j,k,φ)表示不同尺度的空间,p表示尺度空间系数。

如图2所示,精确定位管道泄漏关键点包括:去除管道图像的边缘响应点和去除低对比度点,获取关键点处的拟和函数。

去除边缘响应点,构造2x2的Hessian矩阵:

设ψ,μ分别为N最大、最小特征值,则:

其中,Tr(N)表示特征值N的离散矩阵,Det(N)表示特征值N的行列式;

令ψ=ξμ,则:

因为(ξ+1)2/ξ在两特征值相等时达最小,随ξ的增长而增长,取ξ=10时,当:

其中,Det(H)表示特征值H的行列式,成立时,将该关键点保留,反之则视作边缘响应点被剔除。

去除低对比度点,获取关键点处的拟和函数:

其中,T表示管道的关键点,Q表示管道不同的尺度空间矩阵,w表示空间矩阵的转置。

求导并让方程等于零,可以得到极值点:

对应极值点,方程的值为:

通常,将‖

关键点分配主方向,以关键点为中心的邻域窗口内进行采样,并计算采样点的梯度方向角,表达式为:

其中,j,k表示管道图像的像素点横纵坐标,

计算尺度不变特征转换描述子步骤为:

①以每个关键点为中心,将图像坐标X轴旋转到尺度不变特征转换关键点的主方向上,以确保旋转不变性;②以每个关键点为中心取大小为16×16个像素的窗口,且分割成4×4个子区域,在每个子区域上计算8个方向的高斯加权梯度方向角直方图,越靠近关键点的像素梯度方向信息贡献越大,绘制每个梯度方向的累加值,即可形成一个种子点,因此,一共可以生成16个种子点,这样对于每个关键点就可以产生一个长度为128的数据,即最终得到一个128维的尺度不变特征转换描述子。

在步骤S5中,边缘特征融合算法:

其中,z

其中,

如图3所示,在步骤S6中的相似度计算,第一步:离线构造金字塔特征空间

①在管道图像库,随机选择N幅并分别提取它们的尺度不变特征转换特征子,记作:

其中,A

②设置金字塔的层数E与分支数K。首先,将U的数据用K-Mean方法聚成K类,称所有的聚类中心为金字塔的第1层;然后,分别对这K类数据再用K-Mean方法又聚成K类,称这K*K个聚类中心为金字塔的第2层;依次类推,直到第E层,则停止聚类。最后,从第1层到第E层所有的聚类中心,称为金字塔特征空间,记为:

其中D

第二步:相似度计算

1.多分辨率直方图特征提取,设X表示某图像的尺度不变特征转换描述子集合,计算多分辨率直方图特征,记为:

其中M

2.金字塔匹配函数相似度计算,计算F与G的多分辨率直方图,则F与G之间的相似度定义为:

其中,F,G表示两张相邻的管道图像,E表示所有经过边缘特征融合的管道图像合集,r

本发明通过提出一种基于图像识别快速定位泄漏点的方法通过对管道图像处理判断出泄漏点,该方法是在现有技术的基础上,利用图像极值点的检测方法对管道图像进行特征提取,可以迅速的识别图像特征,并进行提取,同时利用特征融合算法完成图像的分离,最后判断相邻区域图像的相似性迅速找到管道的泄漏点,该方法操作简单可迅速对整条管道进行检测,判断出泄漏点,在管道安装时在电脑系统匹配该方法中可以实现全部泄漏过程的自动化过程,节约了人力成本,可进行大规模推广进行。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解的是,在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种等效的变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号