首页> 中国专利> 一种通过调控微生物群落结构浸出风化壳淋积型稀土矿的方法

一种通过调控微生物群落结构浸出风化壳淋积型稀土矿的方法

摘要

本发明公开了一种通过调控微生物群落结构浸出风化壳淋积型稀土矿的方法,包括以下步骤:1)微生物种类的选择;2)矿石的预处理;3)浸出。本发明采用微生物群落对风化壳淋积型稀土进行浸出,能够有较高的浸出率;本发明根据风化壳淋积型稀土的特点和浸出环境特点,调控合适的微生物群落结构,实现稀土矿产资源的清洁高效利用;本发明采用了兼具降解环境污染物和生态修复及改善功能的微生物菌群,可充分保证稀土资源开发利用与环境的和谐;微生物群落浸出后期,本发明通过补充部分微生物或者补充浸出物质或者调整浸出工艺,使某些微生物富集,或抑制另一些微生物的生长,调整微生物菌群的组成结构组成,从而进一步提高浸出效果。

著录项

  • 公开/公告号CN113046553A

    专利类型发明专利

  • 公开/公告日2021-06-29

    原文格式PDF

  • 申请/专利权人 中南大学;

    申请/专利号CN202110254835.X

  • 发明设计人 申丽;赵红波;吕鑫;邱冠周;

    申请日2021-03-09

  • 分类号C22B3/18(20060101);C22B59/00(20060101);

  • 代理机构43001 长沙永星专利商标事务所(普通合伙);

  • 代理人周咏;林毓俊

  • 地址 410083 湖南省长沙市岳麓区麓山南路932号

  • 入库时间 2023-06-19 11:40:48

说明书

技术领域

本发明属于稀土金属冶金技术领域,具体涉及一种通过调控微生物群落结构浸出风化壳淋积型稀土矿的方法。

背景技术

稀土,被称为是“工业维生素”,是重要的战略资源,在电子、通讯、超导等诸多领域有不可替代的作用,也是升级传统行业、发展新兴产业的关键基础材料,而且在武器装备研制和生产中,稀土产品更是有着广泛的用途。

我国稀土资源丰富,储量大,分布广,矿物种类齐全。历经数十载发展,建立了较完整的稀土产业链和工业体系,稀土开采、冶炼分离和应用技术研发取得较大进步,产业规模不断扩大,已发展成为世界稀土生产、出口和消费的第一大国,在世界上具有举足轻重的地位。尤其是风化壳淋积型(离子型)稀土矿,其中含有更为重要的中、重稀土元素,是我国特色的战略矿产资源。

但稀土行业发展中目前仍存在非法开采屡禁不止,冶炼分离产能不足,生态环境破坏和资源浪费严重,出口秩序较为混乱等问题,严重影响着稀土行业的可持续发展。随着我国稀土工业的快速发展,稀土矿产资源的消耗速度加快,稀土提取过程中资源利用率低和环境污染问题日益严重。尤其是近年来环保要求的提高,传统的化学浸出(主要是硫酸盐和氯化盐)因普遍存在环境污染和生态破坏等问题,应用受到极大限制,迫切需要开发离子型稀土矿的清洁高效提取新技术。因此,如何高效和绿色提取稀土,提高稀土资源利用率和应用附加值,实现稀土元素的均衡应用等,是我国稀土科技和产业发展中亟待解决的问题。

生物冶金是指利用浸矿微生物将矿石中的金属元素溶解到溶液并加以回收的技术,具有绿色环保、成本低、易操作等特点。在当今世界高品位金属资源越来越少的情况下,生物冶金技术显示了极大的优势。它不仅能有效处理各种品位的金属矿物资源,而且能有效控制污染、降低成本,已在工业中得到广泛应用。许多微生物及其代谢产物还具有环境生态修复及改善作用。但是不同的微生物对矿石的浸出效果存在特异性。且当多种微生物共存于一个体系时,由于它们复杂的营养关系和种间关系(互利共生、竞争、寄生、捕食等),导致群落结构不稳定。因而如何调控合适的微生物群落结构对风化壳淋积型稀土矿实现“浸出最大化”十分关键。

发明内容

本发明的目的是提供一种调控微生物群落结构浸出风化壳淋积型稀土矿的方法,解决目前浸出工艺对环境破环大,单一微生物浸出效果低的缺陷。

本发明这种通过调控微生物群落结构浸出风化壳淋积型稀土矿的方法,包括以下步骤:

1)微生物种类的选择:从以下三组微生物中每组中至少选取一种,进行单独培养,培养至设定浓度后,按照设定的比例,将多种微生物进行混合,得到微生物群落,将微生物群落继续培养,得到微生物群落菌悬液;

第一组:铜绿假单胞菌、解脂耶氏酵母、鲁氏接合酵母和枯草芽孢杆菌;

第二组:亚硝酸单胞菌、维氏硝化杆菌;

第三组:植物乳杆菌、丙酸杆菌、醋酸杆菌、酿酒酵母、乳酸片球菌、大肠杆菌;

2)矿石的预处理:将风化壳淋积型稀土矿的矿石进行干式球磨,得到矿石粉;

3)浸出:向步骤2)中的矿石粉中加入步骤1)中的微生物群落菌悬液,在设定条件下进行浸出,浸出设定时间后,向其中补加第一组和第二组中的微生物菌悬液中的一种或多种,或者补加浸出助剂,调整浸出工艺后,继续进行浸出,直至浸出达到平衡,得到含稀土元素的浸出液。

所述步骤1)中,设定浓度是指初始菌浓≥1.0×10

优选的,所述的微生物群落为第一组中选2种,第二组中选2种,第三组中选2种,具体组合为:鲁氏接合酵母、枯草芽孢杆菌、硝酸单胞菌、维氏硝化杆菌、酿酒酵母、乳酸片球菌组成的微生物群落。

优选的,所述的微生物群落为第一组中选1种,第二组中选2种,第三组中选1种,具体组合为:枯草芽孢杆菌、亚硝酸单胞菌、维氏硝化杆菌、酿酒酵母组成的微生物群落。

优选的,微生物群落为第一组中选1种,第二组中选1种,第三组中选1种,具体组合为:解脂耶氏酵母、维氏硝化杆菌、酿酒酵母组成的微生物群落。

所述步骤2)中,风化壳淋积型稀土矿的矿石球磨至-0.074mm占70%以上。

所述步骤3)中,微生物群落菌悬液与矿石粉的液固比1:1~10:1;浸出工艺为:浸出温度为28~33℃,浸出pH为1~6,DO为0~0.6mmol/L,体系电位控制在相对于饱和银/氯化银电极的350~850mV。

所述步骤3)中,浸出设定时间为1~10天。

所述步骤3)中,微生物菌悬液的总加入量为微生物群落菌悬液的体积0.1%~5%;浸出助剂为蔗糖、胰蛋白胨和氯化钠中的一种或多种,浸出助剂的浓度为1~20g/L,加入量为微生物群落菌悬液的体积0.1%~5%。

所述步骤3)中,如果补加微生物无需调整浸出工艺;如果补加浸出助剂,需要调整浸出温度至35~41℃,调整pH至7~10.2;继续浸出时间为1~10天。

本发明的有益效果:(1)本发明采用微生物群落对风化壳淋积型稀土进行浸出,能够有较高的浸出率;(2)本发明根据风化壳淋积型稀土的特点和浸出环境特点,调控合适的微生物群落结构,实现稀土矿产资源的清洁高效利用;(3)本发明采用了兼具降解环境污染物和生态修复及改善功能的微生物菌群,可充分保证稀土资源开发利用与环境的和谐;(4)微生物群落浸出后期,本发明通过补充部分微生物或者补充浸出物质或者调整浸出工艺,使某些微生物富集,或抑制另一些微生物的生长,调整微生物菌群的组成结构组成,从而进一步提高浸出效果,实现稀土元素的“浸出最大化”。

具体实施方式

本发明中的液固比单位为mL/g。

实施例1

将风化壳淋积型稀土矿的矿石干式球磨至-0.074mm占70%以上。

先将铜绿假单胞菌(购买的Pseudomonas aeruginosa ATCC27853)、解脂耶氏酵母(购买的Yarrowialipolytica ATCC30162)、亚硝酸单胞菌(购买Nitrosomonas europaeaATCC19718)、乳酸片球菌(购买的Pediococcusacidilactici ATCC8018)、大肠杆菌(购买的Escherichia coli ATCC25922),先单独在各自适宜的液体培养基中进行培养,5种菌种均培养至初始菌浓≥1.0×10

将微生物群落菌悬液与风化壳淋积型稀土矿矿粉按照液固比为4:1,进行混合,然后调整浸出工艺为:生物浸出过程中维持pH在3.0~6.0,温度30℃,DO为0.25mmol/L,体系电位为537mV,浸出5天后,向浸出体系中补加铜绿假单胞菌菌悬液(相对于微生物群落菌悬液体积的1%,混合之前的单独培养菌悬液)和解脂耶氏酵母的菌悬液(相对于微生物群落菌悬液体积的0.5%,混合之前单独培养的菌悬液),然后继续进行浸出,每天定时取样,用ICP-OES法测定稀土元素的浓度并计算浸出率,至浸出达到平衡(继续浸出6天),浸出率达到稳定,最终稀土的浸出率为96.28%,铝杂质元素浸出率为12.9%。。

实施例2

将风化壳淋积型稀土矿的矿石干式球磨至-0.074mm占70%以上。

采用鲁氏接合酵母(购买的Saccharomyces rouxii ATCC14679)、枯草芽孢杆菌(购买的Bacillus subtilis ATCC6633)、硝酸单胞菌(购买的NitrosomonaseuropaeaATCC19718)、维氏硝化杆菌(购买的NitrobacterwinogradskyiATCC25391)、酿酒酵母(购买的Saccharomyces cerevisiae ATCC20499)、乳酸片球菌(购买的Pediococcusacidilactici ATCC8018),先单独在各自适宜的液体培养基中进行培养,6种菌种均培养至初始菌浓≥1.0×10

将微生物群落菌悬液与风化壳淋积型稀土矿矿粉按照液固比6:1,进行混合,然后调整浸出工艺为:生物浸出过程中维持pH在5.2~6.0,温度32℃,DO为0.31mmol/L,体系电位为584mV,浸出8天后,向浸出体系中补加枯草芽孢杆菌菌悬液(相对于微生物群落菌悬液体积的0.5%,混合之前的单独培养菌悬液)、亚硝酸单胞菌的菌悬液(相对于微生物群落菌悬液体积的0.5%,混合之前的单独培养菌悬液)和维氏硝化杆菌菌悬液(相对于微生物群落菌悬液体积的1%,混合之前的单独培养菌悬液),然后继续进行浸出,每天定时取样,用ICP-OES法测定稀土元素的浓度并计算浸出率,至浸出达到平衡(继续浸出8天),最终稀土的浸出率为97.17%,铝杂质元素浸出率为13.8%。

实施例3

将风化壳淋积型稀土矿的矿石干式球磨至-0.074mm占70%以上。

先将枯草芽孢杆菌(购买的Bacillus subtilis ATCC6633)、亚硝酸单胞菌(购买的Nitrosomonaseuropaea ATCC19718)、维氏硝化杆菌(购买的NitrobacterwinogradskyiATCC25391)、酿酒酵母(购买的Saccharomyces cerevisiae ATCC20499),先单独在各自适宜的液体培养基中进行培养,4种菌种均培养至初始菌浓≥1.0×10

将微生物群落菌悬液与风化壳淋积型稀土矿矿粉按照液固比为4:1,进行混合,然后调整浸出工艺为:生物浸出过程中维持pH在5.5~6.3,温度30℃,DO为0.23mmol/L,体系电位为487mV,浸出7天后,向浸出体系中补加10g/L蔗糖溶液(相对于微生物群落菌悬液体积的2%,混合之前的单独培养菌悬液)和10g/L胰蛋白胨溶液(相对于微生物群落菌悬液体积的1%,混合之前的单独培养菌悬液),并调整浸出的pH至8.3~9.2,浸出温度为39℃,然后继续进行浸出,每天定时取样,用ICP-OES法测定稀土元素的浓度并计算浸出率,至浸出达到平衡(继续浸出6天),最终稀土的浸出率为96.27%,铝杂质元素浸出率为14.3%。

实施例4

将风化壳淋积型稀土矿的矿石干式球磨至-0.074mm占70%以上。

先将解脂耶氏酵母(购买的Yarrowialipolytica ATCC30162)、维氏硝化杆菌(购买的Nitrobacterwinogradskyi ATCC25391)、酿酒酵母(购买的Saccharomycescerevisiae ATCC20499),先单独在各自适宜的液体培养基中进行培养,3种菌种均培养至初始菌浓≥1.0×10

微生物群落菌悬液与风化壳淋积型稀土矿矿粉按照液固比为7:1,进行混合,然后调整浸出工艺为:生物浸出过程中维持pH在5.5~6.3,温度30℃,DO为0.26mmol/L,体系电位为539mV,浸出7天后,向浸出体系中补加1g/L NaCl溶液(相对于微生物群落菌悬液体积的3%),并调整浸出的pH至9.0~10.2,浸出温度为41℃,然后继续进行浸出,每天定时取样,用ICP-OES法测定稀土元素的浓度并计算浸出率,至浸出达到平衡(总共浸出8天),最终稀土的浸出率为97.21%,铝杂质元素浸出率为15.4%。

实施例5

将风化壳淋积型稀土矿的矿石干式球磨至-0.074mm占70%以上。

先将鲁氏接合酵母(购买的Saccharomyces rouxii ATCC14679)、枯草芽孢杆菌(购买的Bacillus subtilis ATCC6633)、维氏硝化杆菌(购买的NitrobacterwinogradskyiATCC25391)、醋酸杆菌(购买的AcetobacteracetiATCC15973)、酿酒酵母(购买的Saccharomyces cerevisiae ATCC20499)、乳酸片球菌(PediococcusacidilacticiATCC8018)、大肠杆菌(Escherichia coli ATCC25922),先单独在各自适宜的液体培养基中进行培养,7种菌种均培养至初始菌浓≥1.0×10

将微生物群落菌悬液与风化壳淋积型稀土矿矿粉按照液固比为4:1,进行混合,然后调整浸出工艺为:生物浸出过程中维持pH在5.5~6.3,温度30℃,DO为0.35mmol/L,体系电位为658mV,浸出10天后,向浸出体系中1g/L NaCl溶液(相对于微生物群落菌悬液体积的3%),并调整浸出的pH至7.0~7.5,浸出温度为35℃,然后继续进行浸出,每天定时取样,用ICP-OES法测定稀土元素的浓度并计算浸出率,至浸出达到平衡(继续浸出11天),最终稀土的浸出率为93.69%,铝杂质元素浸出率为15.2%。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号