首页> 中国专利> 一种锂电池均衡方法、系统、设备及存储介质

一种锂电池均衡方法、系统、设备及存储介质

摘要

本发明公开了一种锂电池均衡方法、系统、设备及存储介质,建立人工内分泌调节模型,人工内分泌调节模型中的每个内分泌细胞对应每个单体电池,每个内分泌细胞的位置为每个单体电池容量与所有电池容量平均值之差,靶细胞的位置为零;内分泌细胞分泌的激素基于运动规则选择其运动方向和距离,当激素到达靶细胞时,激素的多条转移路径中,最短转移路径即为最优均衡能量转移路径;将最短转移路径中的转移方向作为电池容量均衡性调节中的电流方向,将最短转移路径中内分泌细胞与靶细胞的距离作为电池容量均衡性调节中的电流大小,进而对电池容量进行均衡性调节。从而实现快速均衡,满足实际电动车上电池组使用过程中对在线均衡的实时性要求。

著录项

  • 公开/公告号CN112216883A

    专利类型发明专利

  • 公开/公告日2021-01-12

    原文格式PDF

  • 申请/专利权人 长安大学;

    申请/专利号CN202011045503.2

  • 申请日2020-09-28

  • 分类号H01M10/42(20060101);H01M10/44(20060101);B60L58/22(20190101);H02J7/00(20060101);

  • 代理机构61200 西安通大专利代理有限责任公司;

  • 代理人马贵香

  • 地址 710064 陕西省西安市南二环路中段

  • 入库时间 2023-06-19 09:32:16

说明书

技术领域

本发明属于电池均衡管理领域,涉及一种锂电池均衡方法、系统、设备及存储介质。

背景技术

电动汽车上的电池组通常由成百上千个电池组成电池包,锂离子电池连接成电池组后,内部参数(如单体容量、内阻、自放电率)、外部环境(电池温度)以及连续充放电循环导致各电池寿命下降速率的不一致会极大地限制电池组的容量、供电能力和使用寿命。必要的均衡管理系统用以减轻这种内部单体电池之间的不一致。

目前传统的电池组主动均衡策略多以电压为均衡控制参数,通过各单体电池之间的电压差判断是否需要均衡以确保电池组一致性。但由于电压受到内外部因素影响,不能准确反映电池的内部荷电状态,电池组均衡一致性、速度及实时性存在一定限制。

发明内容

本发明的目的在于克服上述现有技术的缺点,提供一种锂电池均衡方法、系统、设备及存储介质,从而实现快速均衡,满足实际电动车上电池组使用过程中对在线均衡的实时性要求。

为达到上述目的,本发明采用以下技术方案予以实现:

一种锂电池均衡方法,包括以下步骤;

步骤一,建立人工内分泌调节模型,人工内分泌调节模型中的每个内分泌细胞对应每个单体电池,每个内分泌细胞的位置为每个单体电池容量与所有电池容量平均值之差,靶细胞的位置为零;

步骤二,内分泌细胞分泌的激素基于运动规则选择其运动方向和距离,当激素到达靶细胞时,激素的多条转移路径中,最短转移路径即为最优均衡能量转移路径;

步骤三,将最短转移路径中的转移方向作为电池容量均衡性调节中的电流方向,将最短转移路径中内分泌细胞与靶细胞的距离作为电池容量均衡性调节中的电流大小,进而对电池容量进行均衡性调节。

优选的,内分泌细胞与靶细胞之间的空间为维有界状态空间,将维有界状态空间网格化,内分泌细胞与靶细胞的距离通过网格进行量化。

优选的,步骤三中,对电池容量进行均衡性调节时,根据电流方向和电流大小,向电路中发送MOSFET开关控制信号及PWM门控信号。

优选的,当电池组中任意一个单体电池容量与电池组平均容量的差值大于设定阈值,则进行电池容量均衡性调节。

优选的,每个单体电池容量与所有电池容量平均值之差的获取过程为:

S1,初始化多个元组数据结构,将每个单体电池初始容量分别记录在一个元组数据结构中;

S2,每间隔一定时间,采集每个单体电池在间隔时间内累积充/放电容量,并将累积充/放电容量记录在元组数据结构中;

S3,当需要获取每个单体电池容量与所有电池容量平均值之差时,计算当前所有电池总容量,进而计算所有电池容量平均值;将元组数据结构中每个单体电池的初始容量与累积充/放电容量进行加减,得到每个单体电池当前容量;将每个单体电池当前容量与所有电池容量平均值之差相减,得到每个单体电池容量与所有电池容量平均值之差。

进一步,S2中,每当某一单体电池发生容量调节时,首先通过查询该单体电池在元组数据结构中有无记录,若有记录,则通过增加单位容量累积频率来更新该电池对应的元组数据结构;否则,创建一个新元组数据结构。

一种锂电池均衡系统,包括:

人工内分泌调节模型系统,用于将人工内分泌调节模型中的每个内分泌细胞对应每个单体电池,每个内分泌细胞的位置为每个单体电池容量与所有电池容量平均值之差,靶细胞的位置为零;

激素路径系统,用于将内分泌细胞分泌的激素基于运动规则选择其运动方向和距离,当激素到达靶细胞时,激素的多条转移路径中,最短转移路径即为最优均衡能量转移路径;

电池容量调节系统,用于将最短转移路径中的转移方向作为电池容量均衡性调节中的电流方向,将最短转移路径中内分泌细胞与靶细胞的距离作为电池容量均衡性调节中的电流大小,进而对电池容量进行均衡性调节。

一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一项所述锂电池均衡方法的步骤。

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一项所述锂电池均衡方法的步骤。

与现有技术相比,本发明具有以下有益效果:

本发明通过人体内分泌系统能够利用激素的特异反应扩散信息处理对机体的平衡调节作用,提出了利用人工内分泌系统调节机制作为锂电池组的均衡策略。当电池组出现电量状态不一致需要平衡时,以各电池容量为均衡控制参数,以各电池的初始容量状态信息作为内分泌细胞,均衡后的目标容量状态信息作为靶细胞,制定一定的移动规则和网格化环境空间,利用激素的反应扩散机制,使激素快速地从内分泌细胞移动至靶细胞,通过均衡时间最小化的目标搜索出激素移动最短路径,对应出均衡时的电池间相互充放电的能量转移路径,从而确定均衡电流在各电池间的流向及大小,向均衡电路中发送MOSFET开关控制信号及PWM门控信号,计算过程快,从而实现快速均衡,均衡精度高、一致性好,解决实际电动车上电池组使用过程中对在线均衡的实时性要求。

进一步,本发明的容量估计方法能够适应实时性均衡要求,即在电池组中各单体电池容量的获取过程中,电池组的状态监测采样数据如环路电流通过数据流的实时统计概要形式存储,继而通过估计求得各电池的实时容量。

附图说明

图1为本发明的Lossy Counting算法和内分泌调节机制电池组均衡方法示意图;

图2为本发明的Lossy Counting算法在线记录累积均衡容量流程图;

图3为本发明的平均值算法的电池均衡容量统计信息矢量化和基于内分泌调节机制均衡控制流程图;

图4为本发明的内分泌调节算法的路径规划流程图。

具体实施方式

下面结合附图对本发明做进一步详细描述:

如图1所示,本发明所述的锂电池均衡方法,旨在改善目前传统的以电压为均衡变量不能准确反映电池内部状态问题,改善由于电动汽车运行状态的多变复杂性导致的电池组均衡效率受硬件资源及成本限制的问题,提升锂离子电池组在线均衡的精度与效率。

先进行电池实时估算总容量,再获取每个电池容量与所有电池容量平均值之差,最后基于内分泌调节机制均衡算法,对电池容量进行调节。

步骤一,初始化多个元组数据结构,将每个电池初始容量分别记录在一个元组数据结构中。

步骤二,每间隔一定时间,采集每个电池在间隔时间内累积充/放电容量,并将累积充/放电容量记录在元组数据结构中;每当某一电池发生容量调节时,首先通过查询该电池在元组数据结构中有无记录,若有记录,则通过增加单位容量累积频率来更新该电池对应的元组;否则,创建一个新元组。

步骤三,当需要获取每个电池容量与所有电池容量平均值之差时,计算当前所有电池总容量,进而计算所有电池容量平均值;将元组数据结构中每个电池的初始容量与累积充/放电容量进行加减,得到每个电池当前容量;将每个电池当前容量与所有电池容量平均值之差相减,得到每个电池容量与所有电池容量平均值之差。

步骤四,建立人工内分泌调节模型,人工内分泌调节模型中的每个内分泌细胞对应每个电池,每个内分泌细胞的位置为每个电池容量与所有电池容量平均值之差,靶细胞的位置为零;内分泌细胞与靶细胞之间的空间为n维有界状态空间,将n维有界状态空间网格化,内分泌细胞与靶细胞的距离通过网格进行量化。

步骤五,内分泌细胞分泌的激素基于运动规则选择其运动方向和距离,当激素到达靶细胞时,激素的多条转移路径中,最短转移路径即为最优均衡能量转移路径;

步骤六,将最短转移路径中的转移方向作为电池容量均衡性调节中的电流方向,将最短转移路径中内分泌细胞与靶细胞的距离作为电池容量均衡性调节中的电流大小,进而对电池容量进行均衡性调节。

对电池容量进行均衡性调节时,根据电流方向和电流大小,向电路中发送MOSFET开关控制信号及PWM门控信号。

当电池组中任意一个电池容量与电池组平均容量的差值大于设定阈值,则进行电池容量均衡性调节。

如图1所示,Lossy Counting算法接受来自电池组及均衡拓扑电路的采样模块的测量及估计数据,对电池组的调节电流等状态信息流进行记录,从而动态记录各单体电池单位容量累积调节频率等频繁项统计概要信息。基于以上获得的概要数据,对各单体电池均衡容量与平均容量之差矢量化,得到初始状态向量。基于内分泌调节机制算法将n维初始状态向量到目标状态向量的路径规划转化为激素调节,从而得到近似最优能量转移路径,控制算法产生均衡拓扑电路所需要的MOSFET开关控制信号及PWM门控信号,控制均衡电流流向及大小,实现电池组单体电池容量的一致性。

使用电池容量作为均衡控制参数可以避免重复均衡,从而缩短均衡时间,也可以减缓电池组老化,延长电池循环寿命,是一个很好的控制参数。而利用Lossy Counting的实时大数据流统计功能,可以在牺牲一定容量估算的精度的情况下提升在线估计的快速性并能够有效节省计算资源,可以降低主动均衡方式的成本。

如图2所示,通过动态记录电池组中被均衡的各单体电池均衡电流等信息,以概要数据的形式在线估算单体电池被累积调节的单位容量频率,将容量作为均衡变量进行电池组的均衡,从而提高电池组均衡控制的精度与效率。所述的Lossy Counting算法步骤如下:

(1)设定误差系数ε∈(0,1)、统计阈值s∈(0,1),通常ε=10%*s,且随着误差系数ε和统计阈值s的减小,精度提高,随之所需计算资源增加。s表示找出单体电池数据流的单位容量累积频率大于s的所有统计概要数据,ε表示统计信息D(e,I(t

(2)设定单位容量ΔQ,并将在线均衡数据划分为若干个容量长度为ΔQ×(1/ε)Ah的窗口,第j个窗口用b

(3)初始化一个元组数据结构D(e,I(t

(4)对于每一个采样时刻t

(5)每当某一单体电池发生调控,首先通过查询该单体电池在元组数据结构中有无记录。若存在,则通过增加单位容量累积频率来更新该单体电池对应的元组数据结构;否则,创建一个新元组数据结构(e,Q=Q(t

(6)若未到窗口边界,则进入步骤(4);当到达窗口边界时,对元组数据结构D中的数据进行删减,即若元组数据结构D(e,I(t

由以上基于数据流技术所得到的单体电池均衡过程中充、放电时累计转移容量的信息概要,加上各电池的初始容量数据,得到各电池的实时总容量,即可得到以容量为变量的这一均衡控制参数。

如图2所示,所述的平均值算法,即以电池组中各电池单元的平均均衡容量作为均衡参考对象,将各电池容量与平均值进行比较,通过均衡电路对变量值较小的电池进行充电或对变量值较大的电池进行放电来实现均衡。以下为均值算法均衡步骤:

将各单体电池容量与电池组平均容量之差转化为一个n维矢量,记为初始状态矢量,目标状态矢量为一n维零矢量。即将各单体电池对应的容量记为C

所述的平均值算法,为了避免均衡反复现象发生,当e

图4示出了本发明的基于内分泌调节算法的路径规划流程图。由初始状态E到目标状态G的最佳路径规划问题求解步骤如下:

基于人工内分泌系统所抽象的五元模型,即LAES=(L

所述LAES模型中,L

EC为内分泌细胞,对应初始状态向量E;由于激素的释放过程是分阶段进行的,并且活性期与其寿命相比非常短。因此,假设激素的释放过程是离散的,内分泌细胞在适当的时间释放一定量的激素。

TC为靶细胞,是可以接受内分泌细胞刺激的器官或细胞,它的受体具有直接结合特定激素的能力,对应目标状态向量G(n维零向量)。

激素H是一种生物活性物质,可用于调节TC和EC的活性,并在环境空间中转移,激素由初始状态E转移至目标状态G的路径即为本发明均衡问题的转移路径。算法A以一定的规则和概率使激素运动,执行激素由内分泌细胞分泌并转移至靶细胞的任务。

算法A实现路径规划的步骤为:

(1)当存在|e

(2)建立人工内分泌调节模型,人工内分泌调节模型中的每个内分泌细胞对应每个单体电池,每个内分泌细胞的位置为每个单体电池容量与所有电池容量平均值之差,初始化环境空间,由于目标状态向量为G为零向量,所以n维有界状态空间L

(3)初始化内分泌细胞EC位置,为初始状态向量{(EC

(4)在初始时刻t

(5)内分泌激素基于运动规则R选择其运动方向和距离,运动规则R是一个依赖于一些局部因素的动力学函数:累积激素浓度和状态空间局部拓扑(障碍与边界),累积激素浓度越高,作为下一步移动点的概率越大,障碍与边界处激素浓度为零。内分泌细胞通过感知所处位置及其周围网格的累积激素浓度,由激素浓度确定选择概率,并根据轮盘规则选择激素移动的下一个位置。

(6)激素扩散最终遇到与之结合的靶细胞,激素的转移路径形成多条,为此需要结合均衡时间最小化即路径最短的原则,寻找最优路径,最优路径满足

(7)对该最短路径的每一步移动方向所对应的物理实现进行规划,确定各电池之间具体的均衡充放电路径,将最短转移路径中的转移方向作为电池容量均衡性调节中的电流方向,将最短转移路径中内分泌细胞与靶细胞的距离作为电池容量均衡性调节中的电流大小,从而确定MOSFETs开闭规则;由于初始和目标状态向量均是容量,而每一步的充放电容量由网格化大小决定,所以每一步的转移容量相同,每一步均衡在于均衡拓扑中MOSFETs启闭规则的不同。

(8)得到近似最优能量转移路径,控制算法产生均衡拓扑电路所需要的MOSFET开关控制信号及PWM门控信号,确定控制均衡电流流向及大小,实现电池组单体电池容量的一致性。

针对当前电动汽车动力电池组的以电压为均衡变量不能准确反映电池内部状态问题,以及电动汽车运行状态的多变复杂性导致的电池组均衡效率受硬件资源及成本限制的问题,本发明提出的基于Lossy Counting的单位容量累积调节频率计数算法,并基于内分泌调节机制的路径规划算法,能够提升锂离子电池组在线均衡的精度与效率。

以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号