首页> 中国专利> 一种近β型钛合金及该钛合金棒材的锻造方法

一种近β型钛合金及该钛合金棒材的锻造方法

摘要

本发明公开了一种近β型钛合金及该钛合金棒材的锻造方法,包括Al 4.5%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,余量为Ti。首先开坯锻造;然后相变点以下30℃~50℃锻造;接着相变点以上100℃~250℃锻造;最后相变点以下锻造,即得。生产出直径Φ260mm~Φ350mm的棒材,组织均匀,力学性能高且非常稳定,探伤满足AMS‑STD‑2154A级要求钛合金棒材,适用于工业化生产。

著录项

  • 公开/公告号CN108504897A

    专利类型发明专利

  • 公开/公告日2018-09-07

    原文格式PDF

  • 申请/专利权人 西安航空学院;

    申请/专利号CN201810731695.9

  • 发明设计人 安震;李天麒;宗彦旭;丁旭;谢辉;

    申请日2018-07-05

  • 分类号C22C14/00(20060101);C22F1/18(20060101);

  • 代理机构西安知诚思迈知识产权代理事务所(普通合伙);

  • 代理人麦春明

  • 地址 710077 陕西省西安市莲湖区西二环259号

  • 入库时间 2023-06-19 06:24:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-02-19

    授权

    授权

  • 2018-10-09

    实质审查的生效 IPC(主分类):C22C14/00 申请日:20180705

    实质审查的生效

  • 2018-09-07

    公开

    公开

说明书

技术领域

本发明属于有色金属加工技术领域,涉及一种近β型钛合金及该钛合金棒材的锻造方法,特别是涉及一种航空结构件用1550MPa级钛合金大规格棒材的锻造方法。

背景技术

近几年来,国家启动了大飞机等项目,根据新型大飞机零部件结构化、整体化,及具有减重效益的设计原则,具有1550Mpa型钛合金被选定为制备飞机起落架及其它承力件的重要结构材料,成为新型大飞机发展的关键。而近β型高强度高韧性的钛合金具有很好的应用前景。

应用在航空领域的钛合金有Ti-5553合金,通过固溶时效及双重热处理,强度可达1400Mpa,延伸率5%以上。因此,在面对航空结构件用的合金上,还需要具有更高强、高韧、高淬透型的产品出现。

另外,由于近β型钛合金经热变形后的组织和性能对热加工工艺的参数很敏感,比较难以控制;另外钛合金加工温度高,造成锭坯开坯锻造难度大,需要采用较大的锻造设备和合理的锻造工艺,从而避免锻造过程中出现的各种缺陷。现有的大多数近β型钛合金的锻造工艺都是首先采用相变点以上锻造若干火次,再在相变点以下锻造若干火次。这样子做会导致产品各个部位容易出现组织不均匀和再结晶现象不完全等问题。

发明内容

本发明实施例的目的在于提供一种近β型钛合金及该钛合金棒材的锻造方法,生产出直径Φ260mm~Φ350mm的棒材,组织均匀,力学性能高且非常稳定,探伤满足AMS-STD-2154A级要求钛合金棒材,适用于工业化生产。

本发明所采用的技术方案是,一种近β型钛合金,按照质量百分比计,由以下组分构成:

Al 4.5%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,余量为Ti。

本发明所采用的另一技术方案是,一种近β型钛合金棒材的锻造方法,具体按照以下步骤进行:

步骤1开坯锻造;

步骤2相变点以下30℃~50℃锻造;

步骤3相变点以上100℃~250℃锻造;

步骤4相变点以下锻造,锻后采用空冷或者水淬,即得。

进一步的,所述步骤1按照以下步骤进行:

选择原料为Φ720mm大型工业钛合金铸锭,铸锭开坯加热温度在相变点以上200℃~300℃,加热保温时间300分钟~450分钟进行1火次;对该钛合金铸锭进行3~6火次的镦拔锻造,每火次锻造温度递减30℃~120℃,单火次锻造比控制在1.6~2.0之间,分锤匀速压下,锻后采用空冷或水淬。

进一步的,镦拔锻造的过程中根据需要两镦两拔或一镦两拔或两拔一镦。

进一步的,所述步骤2按照以下步骤进行:

加热温度在相变点下30℃~50℃,加热保温时间300分钟~450分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.4~1.8之间,分锤匀速压下,锻后采用空冷或水淬。

进一步的,所述步骤3按照以下步骤进行:

加热温度在相变点上100℃~250℃,加热保温时间300分钟~450分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.6~2.0之间,分锤匀速压下,锻后采用空冷或水淬,获得此时中间坯料的晶粒尺寸为1mm~3mm的等轴β晶粒。

进一步的,所述步骤4按照以下步骤进行:

加热至相变点以下Tβ-30℃换向镦拔、Tβ-30℃对角拔长加镦拔、Tβ-35℃两镦两拔、Tβ-40℃倒棱拔长,Tβ-45℃摔圆拔长,锻比控制在1.3~1.8之间,每一个火次的加热保温时间为250分钟~450分钟;锻后采用空冷或者水淬,即得。

本发明的有益效果是:采取首先在相变点以上锻造破碎铸态晶粒,其次在相变点以下锻造1火次,使钛合金的初生α相进行等轴化,再次,回到相变点以上锻造,使β晶粒再次结晶,最终得到细小均匀的β晶粒,最后在相变点以下锻造若干火次,得到成品棒材。该高强(1550MPa级)、高韧钛合金的名义成分为:

Ti-4.5Al-5.5Mo-5V-5.5Cr-1Nb-1.5Fe-0.3Si,属于近β型钛合金。该合金与国际上先进的Ti-5553合金相比,性能水平略优,具有国际先进性。可以用来制备组织均匀、性能高且探伤满足AMS-STD-2154A级要求钛合金棒材。棒材规格Φ260mm~Φ350mm,可以用来制造飞机大型承力构件,解决了航空制造业的急迫需求。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例1中Ф300mm规格棒材退火后的低倍组织图;

图2是对应棒材的边部和心部的显微组织,其中a为边部,b为心部。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

一种近β型钛合金,按照质量百分比计,由以下组分构成:

Al 4.5%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,余量为Ti。

上述近β型钛合金棒材的锻造方法,思路如下:原料为Φ720mm大型工业钛合金铸锭,加工工艺路线是:开坯锻造→相变点以下锻造→相变点以上锻造→相变点以下锻造。具体按照以下步骤进行:

步骤1开坯锻造

选择原料为Φ720mm大型工业钛合金铸锭,铸锭开坯加热温度在相变点以上200℃~300℃,加热保温时间300分钟~450分钟进行1火次;对该钛合金铸锭进行3~6火次的镦拔锻造(根据需要两镦两拔或一镦两拔或两拔一镦),每火次锻造温度递减30℃~120℃,单火次锻造比控制在1.6~2.0之间,分锤匀速压下,锻后采用空冷或水淬;

步骤2相变点以下锻造

加热温度在相变点下30℃~50℃,加热保温时间300~450分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.4~1.8之间,分锤匀速压下,锻后采用空冷或水淬;

步骤3相变点以上锻造

加热温度在相变点上100℃~250℃,加热保温时间300~450分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.6~2.0之间,分锤匀速压下,锻后采用空冷或水淬,获得此时中间坯料的晶粒尺寸为1~3mm的等轴β晶粒;

步骤4相变点以下锻造

相变点以下加热至相变点以下Tβ-30℃换向镦拔、Tβ-30℃对角拔长加镦拔、Tβ-35℃两镦两拔、Tβ-40℃倒棱拔长,Tβ-45℃摔圆拔长,锻比控制在1.3~1.8之间,每一个火次的加热保温时间为250-450分钟;锻后采用空冷或者水淬,即得。

实施例1

Ti-4.5Al-5.5Mo-5V-5.5Cr-1Nb-1.5Fe-0.3Si,相变点:约870℃。铸锭:将锭型为Φ720mm的铸锭进行三均分,以便于锻造,化学成分如表1所示。

表1铸锭化学成分表

(1)开坯锻造,共4火完成:

第1火次锻造加热温度选择1170℃,保温330min(加热时间),二镦二拔锻至□550mm*L(550正方形截面),锻造比为1.8,锻后水淬;

2火次锻造加热温度选择1110℃,保温360min,二镦二拔锻至□550mm*L,锻造比为1.95,锻后空冷;

3火次锻造加热温度选择1070℃,保温360min,二镦二拔锻至□550mm*L,锻造比为1.95,锻后空淬;

4火锻造加热温度选择970℃,保温300h,二镦二拔锻至□550mm,锻造比为1.6,锻后水淬。

(2)相变点以下锻造:

第5火锻造加热温度选择835℃,保温420min,二镦二拔锻至□550mm*L,锻造比为1.6,锻后水淬。

(3)相变点以上锻造:

第6火锻造加热温度选择990℃,保温380min,二镦二拔锻至□550mm*L,锻造比为1.8,锻后水淬。

(4)相变点以下锻造:

第7火锻造加热温度选择840℃,保温350min,换向锻至□550mm*L,锻造比为1.7,锻后水冷;

第8火锻造加热温度选择840℃,保温330min,对角拔长加镦拔锻至□480mm*L,锻造比为1.6,锻后空冷;

第9火锻造加热温度选择835℃,保温360min,两镦两拔锻至□380mm*L,锻造比为1.5,锻后空冷;

第10火锻造加热温度选择830℃,保温280min,倒棱拔长锻至□320mm*L,锻造比为1.4,锻后空冷;

第11火锻造加热温度选择825℃,保温300min,摔圆拔长锻至□310mm*L,锻造比为1.4;锻后采用空冷,最终棒材经车床扒皮后的成品规格为Φ300mm。

Φ300mm棒材经过双重退火处理(退火工艺均为:845℃/2h炉冷到770℃/1.5h,AC+600℃/8h,AC)后,其力学性能分别如表2所示,低倍组织如图1所示,高倍显微组织如图2所示。

表2Φ300mm的棒材双重退火后的力学性能

注:1)取样方式:在棒材端部锯切试样片;

2)试样片热处理:固溶+双重退火;

3)取样位置为棒坯R/2处。

从图1中可以看出,低倍无明显的冶金缺陷,同时不存在金属和非金属的夹杂,组织均匀,呈模糊晶;从图2中可以看出,边部和心部的显微组织非常均匀,均为双态组织。

另外,采用改成分锻造得到的产品,强度与塑性匹配最佳。

实施例2

铸锭:将锭型为Φ720mm的铸锭进行三均分,以便于锻造。

(1)开坯锻造,共4火完成:

第1火次锻造加热温度选择1070℃,保温300min,二镦二拔锻至□550mm*L,锻造比为2.0,锻后空冷;

2火次锻造加热温度选择1040℃,保温450min,二镦二拔锻至□550mm*L,锻造比为1.6,锻后空冷;

3火次锻造加热温度选择920℃,保温350min,二镦二拔锻至□550mm*L,锻造比为1.8,锻后水淬;

4火锻造加热温度选择890℃,保温400min,二镦二拔锻至□550mm,锻造比为1.6,锻后水淬。

(2)相变点以下锻造:

第5火锻造加热温度选择820℃,保温300min,二镦二拔锻至□550mm*L,锻造比为1.4,锻后水淬。

(3)相变点以上锻造:

第6火锻造加热温度选择1120℃,保温450min,二镦二拔锻至□550mm*L,锻造比为2,锻后水淬。

(4)相变点以下锻造:

第7火锻造加热温度选择840℃,保温250min,换向锻至□550mm*L,锻造比为1.3,锻后水冷;

第8火锻造加热温度选择840℃,保温450min,对角拔长加镦拔锻至□480mm*L,锻造比为1.4,锻后空冷;

第9火锻造加热温度选择835℃,保温450min,两镦两拔锻至□380mm*L,锻造比为1.5,锻后空冷;

第10火锻造加热温度选择830℃,保温250min,倒棱拔长锻至□320mm*L,锻造比为1.6,锻后空冷;

第11火锻造加热温度选择825℃,保温300min,摔圆拔长锻至□310mm*L,锻造比为1.7;锻后采用空冷,最终棒材经车床扒皮后的成品规格为Φ300mm。

Φ300mm棒材经过双重退火处理(退火工艺均为:845℃/2h炉冷到770℃/1.5h,AC+600℃/8h,AC)后,其力学性能分别如表3所示。

表3Φ300mm的棒材双重退火后的力学性能

注:1)取样方式:在棒材端部锯切试样片;

2)试样片热处理:固溶+双重退火;

3)取样位置为棒坯R/2处。

实施例3

铸锭:将锭型为Φ720mm的铸锭进行三均分,以便于锻造。

(1)开坯锻造,共4火完成:

第1火次锻造加热温度选择1120℃,保温450min,二镦二拔锻至□550mm*L,锻造比为1.6,锻后水淬;

2火次锻造加热温度选择1080℃,保温360min,二镦二拔锻至□550mm*L,锻造比为1.8,锻后水冷;

3火次锻造加热温度选择960℃,保温300min,二镦二拔锻至□550mm*L,锻造比为1.6,锻后空冷;

4火锻造加热温度选择930℃,保温360min,二镦二拔锻至□550mm,锻造比为1.9,锻后空冷。

(2)相变点以下锻造:

第5火锻造加热温度选择840℃,保温450min,二镦二拔锻至□550mm*L,锻造比为1.8,锻后风冷。

(3)相变点以上锻造:

第6火锻造加热温度选970℃,保温300min,二镦二拔锻至□550mm*L,锻造比为1.6,锻后水淬。

(4)相变点以下锻造:

第7火锻造加热温度选择840℃,保温450min,换向锻至□550mm*L,锻造比为1.8,锻后水冷;

第8火锻造加热温度选择840℃,保温250min,对角拔长加镦拔锻至□480mm*L,锻造比为1.7,锻后空冷;

第9火锻造加热温度选择835℃,保温250min,两镦两拔锻至□380mm*L,锻造比为1.5,锻后空冷;

第10火锻造加热温度选择830℃,保温350min,倒棱拔长锻至□320mm*L,锻造比为1.4,锻后空冷;

第11火锻造加热温度选择825℃,保温400min,摔圆拔长锻至□310mm*L,锻造比为1.3;锻后采用空冷,最终棒材经车床扒皮后的成品规格为Φ300mm。

Φ300mm棒材经过双重退火处理(退火工艺均为:845℃/2h炉冷到770℃/1.5h,AC+600℃/8h,AC)后,其力学性能分别如表4所示。

表4Φ300mm的棒材双重退火后的力学性能

注:1)取样方式:在棒材端部锯切试样片;

2)试样片热处理:固溶+双重退火;

3)取样位置为棒坯R/2处。

对比例1

采用实施例1的制备方法,但是合金成分变为:Al 4.5%,Mo 5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,与实施例1相比,强度下降约20Mpa。

对比例2

采用实施例1的制备方法,但是合金成分变为:Al 4.5%,Mo 6%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,与实施例1相比,强度下降约25Mpa。

对比例3

采用实施例1的制备方法,但是合金成分变为:Al 4.5%,Mo 5.5%,V 5%,Cr4%,Nb 1%,Fe 1.5%,Si 0.3%,与实施例1相比,强度下降约30Mpa。

对比例4

采用实施例1的制备方法,但是合金成分变为:Al 4.5%,Mo 5.5%,V 5%,Cr 6.5%,Nb 1%,Fe 1.5%,Si 0.3%,与实施例1相比,产生偏析,成分不均匀。

对比例5

采用实施例1的制备方法,但是合金成分变为:Al 4.5%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 0.5%,Si 0.3%与实施例1相比,强度下降约25Mpa。

对比例6

采用实施例1的制备方法,但是合金成分变为:Al 4.5%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.1%,与实施例1相比,强度下降约25Mpa。

对比例7

采用实施例1的制备方法,但是合金成分变为:Al 3%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,与实施例1相比,强度下降约35Mpa。

对比例8

采用实施例1的制备方法,但是合金成分变为:Al 6%,Mo 5.5%,V 5%,Cr 5.5%,Nb 1%,Fe 1.5%,Si 0.3%,与实施例1相比,强度下降约50Mpa。

对比例9

采用本发明的合金成分Ti-4.5Al-5.5Mo-5V-5.5Cr-1Nb-1.5Fe-0.3Si,

步骤1开坯锻造

选择原料为Φ720mm大型工业钛合金铸锭,铸锭开坯加热温度在相变点以上150℃,加热保温时间250分钟进行1火次;对该钛合金铸锭进行2火次的镦拔锻造,每火次锻造温度递减20℃,单火次锻造比控制在1.2,分锤匀速压下,锻后采用空冷;

步骤2相变点以下锻造

加热温度在相变点下70℃,加热保温时间500分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.2之间,分锤匀速压下,锻后采用空冷;

步骤3相变点以上锻造

加热温度在相变点上50℃,加热保温时间200分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.4之间,分锤匀速压下,锻后采用空冷;

步骤4相变点以下锻造

相变点以下加热至相变点以下Tβ-50℃换向镦拔、Tβ-60℃对角拔长加镦拔、Tβ-55℃两镦两拔、Tβ-70℃倒棱拔长,Tβ-65℃摔圆拔长,锻比控制在1.2之间,每一个火次的加热保温时间为200分钟;锻后采用空冷,即得。其力学性能分别如表5所示。

表5Φ300mm的棒材双重退火后的力学性能

注:1)取样方式:在棒材端部锯切试样片;

2)试样片热处理:固溶+双重退火;

3)取样位置为棒坯R/2处。

对比例10

采用本发明的合金成分Ti-4.5Al-5.5Mo-5V-5.5Cr-1Nb-1.5Fe-0.3Si,

步骤1开坯锻造

选择原料为Φ720mm大型工业钛合金铸锭,铸锭开坯加热温度在相变点以上350℃,加热保温时间550分钟进行1火次;对该钛合金铸锭进行7火次的镦拔锻造,每火次锻造温度递减20-100℃,单火次锻造比控制在2.5,分锤匀速压下,锻后采用空冷或水淬;

步骤2相变点以下锻造

加热温度在相变点下20℃,加热保温时间200分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在1.8之间,分锤匀速压下,锻后采用空冷或水淬;

步骤3相变点以上锻造

加热温度在相变点上350℃,加热保温时间500分钟;对该钛合金中间坯进行1火次的两镦两拔锻造,锻造比控制在2.5之间,分锤匀速压下,锻后采用空冷或水淬;

步骤4相变点以下锻造

相变点以下加热至相变点以下Tβ-60℃换向镦拔、Tβ-20℃对角拔长加镦拔、Tβ-75℃两镦两拔、Tβ-45℃倒棱拔长,Tβ-25℃摔圆拔长,锻比控制在2之间,每一个火次的加热保温时间为500分钟;锻后采用空冷,即得。其力学性能分别如表6所示。

表6Φ300mm的棒材双重退火后的力学性能

注:1)取样方式:在棒材端部锯切试样片;

2)试样片热处理:固溶+双重退火;

3)取样位置为棒坯R/2处。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号