首页> 中国专利> 一种声光移频反馈固体激光器

一种声光移频反馈固体激光器

摘要

本发明涉及一种声光移频反馈固体激光器,属于激光技术领域,其包括固体激光增益介质、光学谐振腔、分光高反镜和声光调制器,所述光学谐振腔两端分别设有高反腔镜,所述声光调制器设于光学谐振腔内,所述固体激光增益介质发出的激光束进入声光调制器,所述声光调制器将入射光束分成0级和1级衍射光输出,1级衍射光经高反腔镜反馈形成激光起振,同时0级衍射光进入分光高反镜后射出,本发明的声光移频反馈固体激光器结构简单紧凑,能够获得窄线宽无纵模光谱连续激光,同时通过采用不同固体激光增益介质或者非线性频率变换可以获得不同波长光谱连续激光输出,在天文自适应光学、白光原子冷却、气体探测等领域有着重要的应用。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-28

    授权

    授权

  • 2018-07-24

    实质审查的生效 IPC(主分类):H01S3/106 申请日:20180308

    实质审查的生效

  • 2018-06-29

    公开

    公开

说明书

技术领域

本发明涉及激光技术领域,具体地说涉及一种声光移频反馈固体激光器。

背景技术

自1960年梅曼发明第一台红宝石激光器以来,激光器相关技术得到了长足发展并在众多领域获得广泛应用。传统激光器由泵浦源、激光介质和腔镜组成,腔内振荡光场需满足相干驻波条件,因此输出激光光谱为离散纵模结构。但是,外界环境振动、腔内热效应等问题会改变腔结构参数,从而导致激光纵模特性易受影响、产生模跳;同时,不同纵模间存在模式竞争。这两个原因导致传统激光器输出功率和光谱稳定性易受干扰。

而另一方面,在某些应用(如天文自适应光学、白光原子冷却、气体探测等)中要求激光器输出光谱为连续结构,基于此,特提出本发明。

发明内容

针对现有技术的种种不足,为了解决上述问题,现提出一种声光移频反馈固体激光器,该激光器利用声光调制器的1级衍射光相对入射光束存在一定频移量的特性,采用1级衍射光作为腔反馈,破坏传统激光器的纵模形成条件,从而实现无纵模光谱连续激光输出。

为实现上述目的,本发明提供如下技术方案:

一种声光移频反馈固体激光器,包括固体激光增益介质、光学谐振腔、分光高反镜和声光调制器,所述光学谐振腔两端分别设有高反腔镜,所述声光调制器设于光学谐振腔内,所述固体激光增益介质发出的激光束进入声光调制器,所述声光调制器将入射光束分成0级和1级衍射光输出,1级衍射光经高反腔镜反馈形成激光起振,同时0级衍射光进入分光高反镜后射出,所述分光高反镜用于增大0级和1级衍射光的分离角,方便激光输出。

进一步,所述固体激光增益介质为板条、棒或薄片结构,材料可以是晶体或者陶瓷,所用泵浦源为连续或准连续工作方式。

进一步,所述固体激光增益介质和声光调制器两端均镀有激光波段增透膜。

进一步,所述高反腔镜和分光高反镜前表面均镀有激光波段高反膜;所述高反腔镜前表面为平面、凹面或者凸面。

进一步,所述光学谐振腔为直线腔结构,在声光调制器两端分别设有两组分光高反镜,可获得双向激光输出。

进一步,所述光学谐振腔为环形腔结构,在声光调制器前端设有单向器,声光调制器后端设有一组分光高反镜,可获得单向激光输出。

进一步,所述声光调制器采用Bragg声光调制器。

本发明的有益效果是:

本发明提供的声光移频反馈固体激光器利用声光调制器的1级衍射光相对入射光束存在一定频移量的特性,采用1级衍射光作为腔反馈,破坏传统激光器的纵模形成条件,从而实现无纵模光谱连续激光输出,结构简单紧凑,能够获得窄线宽无纵模光谱连续激光,同时通过采用不同固体激光增益介质或者非线性频率变换可以获得不同波长光谱连续激光输出,在天文自适应光学、白光原子冷却、气体探测等领域有着重要的应用。

附图说明

图1是本发明采用直线腔结构的激光器结构示意图;

图2是本发明采用环形腔结构的激光器结构示意图。

附图中:1-固体激光增益介质,2-声光调制器,3-第一高反腔镜,4-第二高反腔镜,5-分光高反镜,6-激光输出,7-单向器。

具体实施方式

为了使本领域的人员更好地理解本发明的技术方案,下面结合本发明的附图,对本发明的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。

实施例一:

如图1所示,一种声光移频反馈固体激光器,包括固体激光增益介质1、光学谐振腔、分光高反镜5和声光调制器2,所述声光调制器2设于光学谐振腔内,所述光学谐振腔两端分别设有高反腔镜,所述固体激光增益介质1为板条、棒或薄片结构,材料可以是晶体或者陶瓷,所用泵浦源为连续或准连续工作方式,所述固体激光增益介质1和声光调制器2两端均镀有激光波段增透膜,所述高反腔镜和分光高反镜5前表面均镀有激光波段高反膜,所述高反腔镜前表面为平面、凹面或者凸面,所述声光调制器采用Bragg声光调制器。

在本实施例中,所述光学谐振腔为直线腔结构,光学谐振腔两端的高反腔镜分别为第一高反腔镜3和第二高反腔镜4,在声光调制器2两端分别设有两组分光高反镜5,所述固体激光增益介质1发出的激光束进入声光调制器2,所述声光调制器将入射光束分成0级和1级衍射光输出,1级衍射光经高反腔镜反馈形成激光起振,同时0级衍射光进入分光高反镜5后射出,所述分光高反镜5用于增大0级和1级衍射光的分离角,方便激光输出,由于设有两组分光高反镜5,可获得双向激光输出6。

具体地,所述固体激光增益介质1为准连续808nm半导体激光侧面泵浦的棒状Nd:YAG激光晶体,晶体棒尺寸为Ф2mm×67mm,掺杂浓度1at.%,两端镀有1064nm增透膜;所述声光调制器2载波频率fAOM=41MHz,1级衍射光的衍射效率~50%,两端镀有1064nm增透膜;所述第一高反腔镜3的前表面为平面,第二高反腔镜4的前表面为曲率半径500mm的凹面,前表面均镀有1064nm高反膜,入射角0°;所述分光高反镜5前表面均镀有1064nm高反膜,入射角45°。

本声光移频反馈固体激光器利用声光调制器的1级衍射光相对入射光束存在一定频移量的特性,采用1级衍射光作为腔反馈,破坏传统激光器的纵模形成条件,从而实现无纵模光谱连续激光输出,结构简单紧凑,能够获得窄线宽无纵模光谱连续激光,同时通过采用不同固体激光增益介质或者非线性频率变换可以获得不同波长光谱连续激光输出,在天文自适应光学、白光原子冷却、气体探测等领域有着重要的应用。

实施例二:

如图2所示,本实施例中与实施例以相同的部分不再赘述,不同的是:本实施例中,所述光学谐振腔为环形腔结构,在声光调制器2前端设有单向器7,声光调制器2后端设有一组分光高反镜5,可获得单向激光输出6,所述单向器7用于实现单向激光输出,其由法拉第磁旋光器、偏振片和二分之一波片组成,端面均镀有1064nm增透膜,所述第一高反腔镜3的前表面为平面,第二高反腔镜4的前表面为曲率半径500mm的凹面,前表面均镀有1064nm高反膜,入射角10°。

以上已将本发明做一详细说明,以上所述,仅为本发明之较佳实施例而已,当不能限定本发明实施范围,即凡依本申请范围所作均等变化与修饰,皆应仍属本发明涵盖范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号