首页> 中国专利> 在金属基材上形成聚合物涂层的方法

在金属基材上形成聚合物涂层的方法

摘要

本发明提供一种制品,其包括基材;聚合物涂层;以及设置在基材和聚合物涂层之间的中间层,该中间层包括碳复合材料,其中,碳复合材料包括碳和含有以下物质中的一种或多种的粘结剂:SiO

著录项

  • 公开/公告号CN107073890A

    专利类型发明专利

  • 公开/公告日2017-08-18

    原文格式PDF

  • 申请/专利权人 贝克休斯公司;

    申请/专利号CN201580059562.6

  • 发明设计人 赵磊;徐志跃;

    申请日2015-10-19

  • 分类号

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人王刚

  • 地址 美国得克萨斯

  • 入库时间 2023-06-19 03:09:15

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-24

    授权

    授权

  • 2017-09-22

    实质审查的生效 IPC(主分类):B32B9/00 申请日:20151019

    实质审查的生效

  • 2017-08-18

    公开

    公开

说明书

相关申请的交叉参考

本申请要求2014年11月18日提交的美国申请第14/546332号的权益,其全部内容通过引用并入本文。

背景技术

聚合物涂层已广泛用于井下工具和附件以通过减少流体流动阻力来提高井产量。聚合物涂层还用来通过最小化来自流体流中的甜酸气体的腐蚀来保护金属基材。然而,聚合物通常不与金属形成强化学键。因此,聚合物涂层和金属基材通常仅通过弱范德华力、弱氢键合或机械联锁固定在一起。在挑战性条件下,可能会发生分层,减少聚合物涂层的使用寿命。因此改善金属基材上聚合物涂层的可靠性与长期性能的材料和方法应更能为本领域接受。

发明内容

在实施例中,一种制品克服了现有技术的上述及其它缺陷,该制品包括:基材;聚合物涂层;以及设置在基材和聚合物涂层之间的中间层,该中间层包含碳复合材料,其中,该碳复合材料包括碳和含有以下物质中的一种或多种的粘结剂:SiO2、Si、B、B2O3、金属或金属的合金;并且其中,金属包括以下物质中的一种或多种:铝、铜、钛、镍、钨、铬、铁、锰、锆、铪、钒、铌、钼、锡、铋、锑、铅、镉或硒。

一种涂覆基材的方法,包括:在基材上设置碳复合材料层;将碳复合材料层粘结至基材,从而在碳复合材料层和基材之间形成第一粘结层;将单体、第一聚合物或其组合接枝在碳复合材料层上以提供第二粘结层;以及用包括第二聚合物的涂料组合物涂覆第二粘结层;其中碳复合材料层包括碳和粘结剂;粘结剂包括以下物质中的一种或多种:SiO2、Si、B、B2O3、金属或金属的合金;并且金属包括以下物质中的一种或多种:铝、铜、钛、镍、钨、铬、铁、锰、锆、铪、钒、铌、钼、锡、铋、锑、铅、镉或硒。

附图说明

以下描述无论如何都不应视作限制性的。参考附图,相同元件采用相同编号。

图1示出了用于根据本公开的实施例在金属基材上形成聚合物涂层的工艺,其中图1(a)示出了涂覆有碳复合材料层的基材;图1(b)示出了第一粘结层在基材和碳复合材料层之间形成;图1(c)示出了第二粘结层已接枝在碳复合材料层上;并且图1(d)示出了聚合物涂层设置在第二粘结层上;

图2是根据本公开实施例的碳复合材料的SEM图像。

具体实施方式

本发明的发明人已研制出了将聚合物涂覆在金属基材或陶瓷基材上的工艺。有利地,中间层设置在聚合物涂层和金属或陶瓷基材之间。中间层包括碳复合材料,碳复合材料包含诸如石墨的碳和无机粘结剂。碳复合材料中的无机粘结剂促进中间层粘结至基材。同时碳复合材料中的碳通过诸如共价键的强化学键促进中间层粘结至聚合物涂层。工艺允许制造具有改善的可靠性和长期性能的涂覆基材。

在一个实施例中,提供了一种制品,该制品包括基材、聚合物涂层和设置在基材和聚合物涂层之间的中间层,其中,中间层包括碳复合材料,碳复合材料包含碳和粘结剂。

基材可以是金属材料或陶瓷材料。其可以不经表面加工就使用,或者可以进行加工,包括以化学方式、物理方式或机械方式对基材进行处理。例如,基材可以例如通过砂磨、研磨或喷砂进行处理以粗糙化或增加基材的表面区域。也可以通过化学和/或机械方法清洁基材的表面以去除污染物。

基材的金属包括来自周期表的第1族和第2族的元素、其合金或其组合。示例性金属为镁、铝、钛、锰、铁、钴、镍、铜、钼、钨、钯、铬、钌、金、银、锌、锆、钒、硅或其组合,包括其合金。例如,金属合金包括铝基合金、镁基合金、钨基合金、钴基合金、铁基合金、镍基合金、钴镍基合金、铁镍基合金、铁钴基合金、铜基合金和钛基合金。如本文所用,术语“金属基合金”指的是金属合金,其中基于合金的总重量,合金中特定金属的重量百分比大于合金的任何其它成分的重量百分比。示例性金属合金包括钢、镍铬合金、黄铜、铅锡锑合金、青铜、殷钢、镍铬铁合金、哈斯特洛伊合金、MgZrZn、MgAlZn、AlCuZnmn和AlMgZnSiMn。

陶瓷不受具体限制并且可以根据涂覆有碳复合涂料的基材的具体应用来选择。陶瓷的实例包括氧化物基陶瓷、氮化物基陶瓷、碳化物基陶瓷、硼化物基陶瓷、硅化物基陶瓷或其组合。在一个实施例中,氧化物基陶瓷是二氧化硅(SiO2)或二氧化钛(TiO2)。氧化物基陶瓷、氮化物基陶瓷、碳化物基陶瓷、硼化物基陶瓷或硅化物基陶瓷可以包含非金属(例如氧、氮、硼、碳或硅等)、金属(例如铝、铅、铋等)、过渡金属(例如铌、钨、钛、锆、铪、钇等)、碱金属(例如锂、钾等)、碱土金属(例如钙、镁、锶等)、稀土(例如镧、铈等)或卤素(例如氟、氯等)。

基材可以是任何形状的。示例性形状包括立方体、球体、圆柱体、环形体、多边形形状、螺旋状、其截头形状或其组合。基材的最长线性尺寸可以为500nm至几百米,但不限于此。基材可以具有可以在不发生分解或降解的情况下经受暴露于-10℃至800℃的温度的热分解温度。然而,设置在基材上的涂层可以提供温度屏蔽或热导性以从基材带走热量,使得基材不经历接近其热分解温度的温度。

中间层包括碳复合材料,碳复合材料包含碳和无机粘结剂。碳可以是石墨。如本文所用,石墨包括以下物质中的一种或多种:天然石墨、合成石墨、可膨胀石墨或膨胀石墨。天然石墨是天然形成的石墨。其可以分类为“片状”石墨、“纹理”石墨和“无定形”石墨。合成石墨是由碳材料制成的制造产物。热解石墨是合成石墨的一种形式。可膨胀石墨是指具有嵌在天然石墨层与合成石墨层之间的嵌入型材料的石墨。许多种化学物质已用于嵌入石墨材料。这些化学物质包括酸、氧化剂、卤化物等。示例性嵌入型材料包括硫酸、硝酸、铬酸、硼酸、SO3或诸如FeCl3、ZnCl2和SbCl5的卤化物。加热时,嵌入物从液态或固态转化为气相。气体形成生成了将邻近碳层推开的压力,导致膨胀石墨。膨胀石墨颗粒在外观上呈蠕虫状,因而通常称为蠕虫。

一般而言,石墨可以被衍生化为包括各种不同的官能团,诸如例如羧基(例如羧酸基团)、环氧基、醚基、酮基、胺基、羟基、烷氧基、烷基、芳基、芳烷基、烷芳基、内酯等。

在示例性实施例中,石墨通过例如胺化被衍生化为包括胺基团,其中胺化可通过还原之前的硝化完成,或者通过需要在脱保护之前的胺、取代胺或保护胺的离去基团的亲核取代而完成。在另一个实施例中,石墨通过氧化方法被衍生化以通过使用过氧化物产生环氧基、羟基团或乙二醇基团,或者通过双键裂解被衍生化,双键裂解通过例如诸如高锰酸盐氧化的金属介导氧化完成,以形成酮基、醛基或羧酸官能团。

如果官能团是烷基、芳基、芳烷基、烷芳基或这些基团的组合,官能团通过中间官能团(例如羧基和氨基)连接或者以以下方式直接连接至石墨:通过不混入杂原子的碳-碳键,以向衍生石墨提供更大的热和/或化学稳定性以及需要更少步骤的效率较高的合成工艺;通过碳-氧键(其中石墨包含诸如羟基或羧酸的含氧官能团);或者通过碳-氮键(其中纳米颗粒包含诸如胺或酰胺的含氮官能团)。在一个实施例中,在碳-碳键形成步骤中,石墨可以通过与C6-30芳基或C7-30芳烷基卤化物(F、Cl、Br和I)的金属介导反应被衍生化,例如通过诸如Stille反应、Suzuki耦合或重氮耦合的钯介导反应,或者通过有机铜耦合反应。

在另一个实施例中,在碳-碳键形成步骤中,石墨通过与例如诸如锂、钠或钾的碱金属的反应而直接被金属化,随后是与具有诸如卤化物(Cl、Br和I)的离去基团或其它离去基团(例如甲苯磺酸盐和甲磺酸盐等)的C1-30烷基或C7-30烷芳基化合物进行反应。芳基或芳烷基卤化物、或者烷基或烷芳基化合物可用诸如羟基、羧基、醚基等的官能团取代。例如,示例性基团包括羟基团、羧酸基团、诸如甲基、乙基、丙基、丁基、戊基、己基、辛基、十二烷基和十八烷基等的烷基团;包括苯基和羟苯基的芳基团;诸如经由诸如在4-甲基苯基、4-羟基甲基苯基或4-(2-羟基乙基)苯基(还称为苯乙醇)基团等内的芳基部分连接的苄基团的烷芳基团,或者连接在诸如在苯甲基或4-羟苯基甲基团内发现的苄基(烷基)位置、在苯乙基或4-羟基苯乙醇基团等内2-位置等的芳烷基团。在示例性实施例中,衍生的石墨是由苄基、4-羟基苄基、苯乙基、4-羟基苯乙醇、4-羟基甲基苯基或4-(2-羟基乙基)苯基团或包括至少一种前述基团的组合取代的石墨。

在一个实施例中,碳复合材料包括在碳微结构之间具有间隙空间的碳微结构,其中粘结剂设置在至少一些间隙空间内。在一个实施例中,碳微结构包括碳微结构中的未填充空隙。在另一个实施例中,碳微结构之间的间隙空间和碳微结构内的空隙均由粘结剂或其衍生物填充。

碳微结构是将石墨压缩成高度浓缩状态之后的石墨的显微镜下结构。其包括沿压缩方向叠置在一起的石墨基面。如本文所用,碳基面是指基本上平坦、平行的碳原子片或层,其中每片或层具有单一原子厚度。石墨基面也称为碳层。碳微结构通常是平坦且薄的。其可以具有不同形状并且还可以称为微薄片和微盘等。在一个实施例中,碳微结构基本上彼此平行。

碳复合材料中有两种类型的空隙——碳微结构之间的空隙或间隙空间和每个单个碳微结构内的空隙。碳微结构之间的间隙空间的尺寸为约0.1至约100微米,具体为约1至约20微米,然而碳微结构内的空隙要小得多并且通常为约20纳米至约1微米、具体为约200纳米至约1微米。间隙空间的空隙的形状不具体限制。如本文所用,空隙或间隙空间的尺寸是指空隙或间隙空间的最大尺度,并且可以通过高分辨率电子显微镜技术或原子力显微镜技术来确定。

碳微结构之间的间隙空间由微米尺寸或纳米尺寸的粘结剂填充。例如,粘结剂可以占据碳微结构之间的间隙空间的约10%至约90%。在一个实施例中,粘结剂不渗透各个碳微结构,并且碳微结构内的空隙未填充,即未填充任何粘结剂。因此碳微结构内的碳层并不由粘结剂锁定在一起。通过该机构,碳复合材料,尤其是膨胀碳复合材料的灵活性可以保持。在另一个实施例中,为实现较高的强度,碳微结构内的空隙由粘结剂或其衍生物填充。填充碳微结构内的空隙的方法包括气相淀积。

碳微结构的厚度为约1至约200微米、约1至约150微米、约1至约100微米、约1至约50微米,或约10至约20微米。碳微结构的直径或最大尺度为约5至约500微米或约10至约500微米。碳微结构的长宽比可以为约10至约500、约20至约400或约25至约350。在一个实施例中,碳微结构中的碳层之间的距离为约0.3纳米至约1微米。碳微结构可以具有约0.5至约3g/cm3或约0.1至约2g/cm3的密度。

在碳复合材料中,碳微结构通过粘结相固定在一起。粘结相包括通过机械联锁粘结碳微结构的粘结剂。可选地,界面层在粘结剂和碳微结构之间形成。界面层可以包括化学键、固溶体或其组合。如果存在的话,化学键、固溶体或其组合可加强碳微结构的联锁。应当理解,碳微结构可由机械联锁和化学粘结固定在一起。例如,化学键合、固溶体或其组合可以在一些碳微结构和粘结剂之间形成,或者为了具体碳微结构仅在碳微结构表面上的碳的一部分和粘结剂之间形成。对于不形成化学键、固溶体或其组合的碳微结构或碳微结构的一部分来说,碳微结构可以通过机械联锁粘结。粘结相的厚度为约0.1至约100微米或约1至约20微米。粘结相可以形成将碳微结构粘结在一起的连续的或不连续的网络。

示例性粘结剂包括非金属、金属、合金或包含至少一种前述物质的组合。非金属是以下物质中的一种或多种:SiO2、Si、B或B2O3。金属可以是以下物质中的一种或多种:铝、铜、钛、镍、钨、铬、铁、锰、锆、铪、钒、铌、钼、锡、铋、锑、铅、镉或硒。合金包括以下物质中的一种或多种:铝合金、铜合金、钛合金、镍合金、钨合金、铬合金、铁合金、锰合金、锆合金、铪合金、钒合金、铌合金、钼合金、锡合金、铋合金、锑合金、铅合金、镉合金或硒合金。在一个实施例中,粘结剂包括以下物质中的一种或多种:铜、镍、铬、铁、钛、铜的合金、镍的合金、铬的合金、铁的合金或钛的合金。示例性合金包括钢、诸如镍铬铁合金的镍铬基合金和诸如蒙乃尔合金的镍铜基合金。镍铬基合金可以包含约40-75%的Ni和约10-35%的Cr。镍铬基合金还可以包含约1%至约15%的铁。少量的Mo、Nb、Co、Mn、Cu、Al、Ti、Si、C、S、P、B或包括至少一种前述物质的组合还可以被包含在镍铬基合金内。镍铜基合金主要由镍(高达约67%)和铜构成。镍铜基合金还可以含有少量铁、锰、碳和硅。这些材料可以为诸如颗粒、纤维和线的不同形状。可以使用上述材料的组合。

用于制备碳复合材料的粘结剂可以是微米尺寸的或纳米尺寸的。在一个实施例中,粘结剂的平均颗粒尺寸为约0.05至约250微米、约0.05至约50微米、约1至约40微米,具体为约0.5至约5微米、更具体地是约0.1至约3微米。不希望受理论束缚,据信当粘结剂的尺寸在这些范围内时,其在碳微结构中均匀地分散。

当存在界面层时,粘结相包括包含粘结剂的粘结剂层和将所述至少两个碳微结构中的一个粘结至粘结剂层的界面层。在一个实施例中,粘结相包括粘结剂层、将碳微结构之一粘结至粘结剂层的第一界面层、以及将微结构中的另一微结构粘结至粘结剂层的第二界面层。第一界面层和第二界面层可以具有相同或不同的组合物。

界面层包括以下中的一种或多种:C-金属键、C-B键、C-Si键、C-O-Si键、C-O-金属键或金属碳溶液。键由碳微结构的表面上的碳和粘结剂形成。

在一个实施例中,界面层包括粘结剂的碳化物。碳化物包括以下物质中的一种或多种:铝的碳化物、钛的碳化物、镍的碳化物、钨的碳化物、铬的碳化物、铁的碳化物、锰的碳化物、锆的碳化物、铪的碳化物、钒的碳化物、铌的碳化物或钼的碳化物。这些碳化物通过使相应的金属或金属合金粘结剂与碳微结构的碳原子发生反应而形成。粘结相还可以包括通过使SiO2或Si与碳微结构的碳发生反应而形成的SiC、或通过使B或B2O3与碳微结构的碳发生反应而形成的B4C。当使用粘结剂材料的组合时,界面层可以包括这些碳化物的组合。碳化物可以是诸如碳化铝的盐类碳化物、诸如SiC和B4C的共价碳化物、诸如4、5和6族过渡金属的碳化物的间隙碳化物、或者中间过渡金属碳化物(例如Cr、Mn、Fe、Co和Ni的碳化物)。

在另一个实施例中,界面层包括碳(如石墨)和粘结剂的固溶体。碳在某些金属基质中或在某些温度范围内具有溶解性,这可以促进金属相润湿并且粘结到碳微结构上。通过热处理,可以在低温下保持碳在金属中的高溶解性。这些金属包括以下物质中的一种或多种:Co、Fe、La、Mn、Ni或Cu。粘结剂层也可以包括固溶体和碳化物的组合。

基于碳复合材料的总重量,碳复合材料包含约20至约95wt.%、约20至约80wt.%、或约50至约80wt.%的碳。基于碳复合材料的总重量,粘结剂的存在量为约5wt.%至约75wt.%或约20wt.%至约50wt.%。在碳复合材料中,碳相对于粘结剂的重量比为约1∶4至约20∶1、或约1∶4至约4∶1、或约1∶1至约4∶1。

碳复合材料可以可选地包括填料。示例性填料包括以下物质中的一种或多种:碳纤维、炭黑、云母、粘土、玻璃纤维、陶瓷纤维或陶瓷粉末。陶瓷材料包括SiC、Si3N4、SiO2、BN等。填料的存在量可以为约0.5至约50wt.%、约0.5至约40wt.%、约0.5至约25wt.%、0.5至约10wt.%、或约1至约8wt.%。

在一个实施例中,中间层包括一个或多个碳复合材料箔。碳复合材料箔可以在厚度和化学组成方面相同或不同。为了促进中间层和基材之间的粘结,当存在多于一个碳复合材料箔时,与距基材较远的箔相比,最靠近基材的箔可以具有较大量的粘结剂。

在基材上形成的中间层可以完全覆盖基材或基材的表面。中间层的厚度可以为约5μm至约10mm,具体为约10μm至约5mm。在一个实施例中,中间层是连续的,并且不具有空隙、微孔、裂缝或其它缺陷(包括针孔等)。

中间层可以通过第一粘结层粘合到基材。第一粘结层的厚度可以为约50nm至约2mm或约100nm至约1mm。第一粘结层包括以下中的一种或多种:基材和在碳复合材料中的粘结剂的固溶体;包含在碳复合材料的粘结剂以及基材二者中的材料;或焊料。在使用活化箔的实施例中,粘结层还可以包括活化材料的反应产物。如果存在,反应产物分散在固溶体中、包含在碳复合材料的粘结剂以及基材二者中的材料中、或粘结层中的焊料中。

取决于预期的用途或应用方法,各种合金可用作用于将涂层接合到基材的焊料。如本文所使用,焊料包括用于钎焊的填料金属。示例性焊料包括Cu合金、Ag合金、Zn合金、Sn合金、Ni合金和Pb合金。也可以使用其它已知的焊料材料。焊料还可以包括合金的组合。

碳复合材料中诸如石墨的碳可通过将某些聚合物链或单体接枝到石墨上的官能团来衍生。例如,具有羧酸官能团、羟基官能团和/或胺官能团的诸如丙烯酸链的聚合物链;诸如聚乙烯胺或聚乙烯亚胺的多胺;和诸如聚(乙二醇)和聚(丙二醇)的聚(亚烷基二醇),可通过与石墨上的官能团发生反应而被包含。替选地或另外地,碳复合材料中的石墨也可以用具有可聚合基团的单体来衍生。可聚合基团包括α,β-不饱和羰基、α,β-不饱和腈基、烯基、炔基、羧酸乙烯酯基、羧基、羰基、环氧基、异氰酸酯基、羟基、酰胺基、氨基、酯基、甲酰基、腈基、硝基或包含上述基团中至少一种的组合。接枝聚合物或单体形成通过强共价键束缚到中间层的表面的薄粘结层。

聚合物涂层包括聚合物和树脂,例如酚醛树脂,包括由苯酚、间苯二酚、邻-、间-和对-二甲苯酚、邻-、间-或对-甲酚等制备的那些、以及醛,例如甲醛、乙醛、丙醛、丁醛、己醛、辛醛、十二醛、苯甲醛、水杨醛,其中示例性酚醛树脂包括酚甲醛树脂;环氧树脂(例如由双酚A二环氧化物制备的那些)、聚醚醚酮(PEEK)、双马来酰亚胺(BMI)、尼龙(例如尼龙-6和尼龙6,6)、聚碳酸酯(例如双酚A聚碳酸酯)、聚氨酯、腈-丁基橡胶(NBR)、氢化丁腈橡胶(HNBR)、高氟含量的含氟弹性体橡胶(例如FKM系列中以及以商品名(可购自FKM-Industries)销售的那些)以及全氟弹性体(例如FFKM(也可购自FKM-Industries)以及还以商品名全氟弹性体(可购自DuPont)和粘合剂(可购自Dexco LP)销售的全氟弹性体)、有机聚硅氧烷(例如官能化或非官能化聚二甲基硅氧烷(PDMS))、四氟乙烯-丙烯弹性体共聚物(例如以商品名销售的和由Asahi Glass Co.销售的那些)、乙烯-丙烯-二烯单体(EPDM)橡胶、聚乙烯、聚乙烯醇(PVA)、聚苯硫醚、聚苯砜、自增强聚亚苯基、聚芳醚酮或这些聚合物的交联产品。

在一个实施例中,聚合物涂层通过链缠结粘附到接枝的薄粘结层上。在另一个实施例中,聚合物涂层中的聚合物可以与接枝的薄粘结层中的单体或聚合物交联。

可选地,使用交联剂来帮助交联。交联剂可以包括过氧化合物、金属过氧化物、金属氧化物、醌、二氧化硅、硫或其组合。示例性醌包括对苯醌、四甲基苯醌、萘醌等。可用作交联剂的过氧化合物包括烷基或芳基二过氧化合物和金属过氧化物。示例性芳基二过氧化合物包括基于过氧化二异丙苯(DCP)由Arkema,Inc.以商品名销售的那些,包括二烷基过氧化物、40C二烷基过氧化物(在碳酸钙载体上)、40K二烷基过氧化物、40KE二烷基过氧化物;和烷基二过氧化合物,包括2,5-二甲基-2,5-二(叔丁基过氧)己烷和由Akzo-Nobel以商品名101销售的。示例性金属过氧化物包括过氧化镁、过氧化钙、过氧化锌等、或其组合。用作交联剂的金属氧化物包括例如氧化锌、氧化镁、二氧化钛等、或其组合。

一种涂覆基材的方法,包括:在基材上设置碳复合材料层;将碳复合材料层粘结至基材从而在碳复合材料层和基材之间形成第一粘结层;将单体、第一聚合物或其组合接枝在碳复合材料层上以提供第二粘结层;以及采用包含第二聚合物的组合物涂覆第二粘结层。

在一个实施例中,将碳复合材料层粘结到基材包括加热碳复合材料层和基材以在碳复合材料层和基材之间形成第一粘结层。加热的方法没有具体限定。例如,碳复合材料涂覆的基材可以在约350℃至约1400℃、特别是约800℃至约1200℃的温度下在烘箱中进行加热。可选地,该方法还包括在加热期间将碳复合材料层和基材压在一起。

在另一个实施例中,将碳复合材料层粘结到基材包括通过以下方式中的一种或多种对碳复合材料层和基材上设置有涂层的表面进行加热:直流加热、感应加热、微波加热或放电等离子体烧结。可选地,可以在加热期间对碳复合材料层和基材施加力以将它们固定在一起。

例如,电流可以穿过电极到达基材和碳复合材料层。由于碳复合材料层和基材彼此接触时的电阻较高,会产生热量。产生的热量可以熔融或软化碳复合材料层中的粘结剂和/或基材的表面上的材料,从而在碳复合材料层和基材之间形成第一粘结层。在冷却时,粘结层将碳复合材料层粘结到基材。

在一个实施例中,该方法还包括:在碳复合材料层和基材之间设置焊料;向焊料施加热量;以及将碳复合材料层粘结到基材。因为与碳复合材料和基材材料中的无机粘结剂相比,焊料可以具有更低的熔点或更低的软化温度,所以如果使用焊料,则可能需要更少的热量。可选地,该方法还包括将碳复合材料层和基材压在一起,同时向焊料施加热量。

在另一个实施例中,该方法还包括在基材和碳复合材料层之间设置活化箔;以及将活化箔暴露于选定形式的能量以将碳复合材料层粘结到基材。替选地,活化箔可以层压到碳复合材料箔上以形成碳复合材料层。然后,可以将包括碳复合材料箔和活化箔的碳复合材料层设置在基材的表面上。可选地,该方法还包括将活化箔暴露于选定形式的能量时,将碳复合材料层、活化箔和基材压在一起。

活化箔包括当暴露于选定形式的能量时可经历强烈放热反应以产生大量局部热的材料或反应物。所选定形式的能量包括:电流;电磁辐射,包括红外辐射、紫外辐射、伽马射线辐射和微波辐射;或热。因此,活化箔可以用作将碳复合材料层接合到基材的热源。

铝热剂和自传播粉末混合物可用作活化材料。铝热剂组合物包括例如产生称为铝热反应的放热氧化还原反应的金属粉末(还原剂)和金属氧化物(氧化剂)。还原剂的选择包括例如铝、镁、钙、钛、锌、硅、硼、以及包括前述物质至少一种的组合,而氧化剂的选择包括例如氧化硼、氧化硅、氧化铬、氧化锰、氧化铁、氧化铜、氧化铅以及包括前述物质中的至少一种的组合。自传播粉末混合物包括以下中的一种或多种:Al-Ni(Al粉末和Ni粉末的混合物)、Ti-Si(Ti粉末和Si粉末的混合物)、Ti-B(Ti粉末和B粉末的混合物)、Zr-Si(Zr粉末和Si粉末的混合物)、Zr-B(Zr粉末和B粉末的混合物)、Ti-Al(Ti粉末和Al粉末的混合物)、Ni-Mg(Ni粉末和Mg粉末的混合物)或Mg-Bi(Mg粉末和Bi粉末的混合物)。

制备碳复合材料的方法已经在共同未决的申请14/499,397中公开,其全部内容通过引用并入本文。在涂层中形成碳复合材料的一种方法是压缩包含碳和微米尺寸或纳米尺寸的粘结剂的组合以通过冷压提供生坯;以及对该压坯进行压缩和加热,从而形成碳复合材料。在另一个实施例中,可以在室温下压制该组合以形成压坯,然后在大气压下加热该压坯以形成碳复合材料。这些工艺可以称为两步工艺。替选地,包含碳和微米尺寸或纳米尺寸的粘结剂的组合可以进行直接压缩和加热以形成碳复合材料。该工艺可以称为一步工艺。

在组合中,基于组合的总重量,诸如石墨的碳的存在量为约20wt.%至约95wt.%、约20wt.%至约80wt.%、或约50wt.%至约80wt.%。基于组合的总重量,粘结剂的存在量为约5wt.%至约75wt.%或约20wt.%至约50wt.%。组合中的石墨可以是碎片、粉末、小片、薄片等的形式。在一个实施例中,石墨为直径为约50微米至约5000微米、优选地约100微米至约300微米的薄片形式。石墨薄片可以具有约1至约5微米的厚度。组合的密度为约0.01至约0.05g/cm3、约0.01至约0.04g/cm3、约0.01至约0.03g/cm3或约0.026g/cm3。组合可以经由本领域已知的任何合适的方法通过将石墨和微米尺寸或纳米尺寸的粘结剂进行混合而形成。合适的方法的示例包括球混合、声混合、带式共混、垂直螺杆混合和V型混合。在另一个实施例中,组合通过气相沉积而制备。“气相沉积”工艺是指通过气相在基材上沉积材料的工艺。气相沉积工艺包括物理气相沉积、化学气相沉积、原子层沉积、激光气相沉积和等离子体辅助气相沉积。粘结剂前体的示例包括三乙基铝和羰基镍。可以使用物理沉积、化学沉积和等离子体辅助气相沉积的不同变型。示例性沉积工艺可以包括等离子体辅助化学气相沉积、溅射、离子束沉积、激光烧蚀或热蒸发。通过气相沉积工艺,粘结剂可以至少部分地填充碳微结构内的空隙。

参照两步工艺,冷冲压意味着:只要粘结剂没有显著地与石墨微结构粘结,则包括石墨和微米或纳米尺寸的粘结剂的组合在室温下或高温下被压缩。在一个实施例中,约80wt.%以上的、约85wt.%以上的、约90wt.%以上的、约95wt.%以上的或约99wt.%以上的微结构在生坯中没有粘结。形成生坯的压力可以为约500psi到约10ksi,并且温度可为约20℃到约200℃。在该阶段的还原比(即,生坯体积相对于该组合体积)为约40%至约80%。生坯的密度为约0.1到约5g/cm3、约0.5到约3g/cm3或约0.5到约2g/cm3

生坯可在约350℃到约1400℃的温度下加热,具体地在约800℃到约1200℃的温度下加热以形成碳复合材料。在一个实施例中,温度为粘结剂熔点的约±20℃到约±100℃,或者为粘结剂熔点的±20℃到约±50℃。在另一个实施例中,温度高于粘结剂的熔点,例如,高于粘结剂熔点约20℃到约100℃或高于粘结剂熔点约20℃到约50℃。当温度越高时,粘结剂越不粘且越流动,使得粘结剂均匀地分布在碳微结构之间的空隙上所需要的压力越小。然而,如果温度太高,则其可对仪器造成不良影响。

可根据预定温度安排或温度变化速率施加温度。加热方式没有具体限定。示例性加热方法包括直流(DC)加热、感应加热、微波加热以及放电等离子烧结(SPS)。在一个实施例中,经由DC加热进行加热。例如,包括石墨和微米或纳米尺寸的粘结剂的组合可用电流充电,电流流经该组合,很快生成热量。可选地,加热也可在惰性气氛下进行,例如氩气或氮气下。在一个实施例中,生坯在空气的存在下进行加热。

可在约500psi到约30000psi或约1000psi到约5000psi的压力下进行加热。压力可以高于或低于大气压力。在不希望受理论约束的情况下,据信,当对该组合施加低于大气压的压力时,微米或纳米尺寸的粘结剂被迫通过渗透进入碳微结构之间的空隙中。当对该组合施加低于大气压的压力时,微米或纳米尺寸的粘结剂也可通过毛细力被迫进入碳微结构之间的空隙中。

在一个实施例中,形成碳复合材料的期望压力不会被一次性全部施加。加载生坯之后,开始在室温下或在低温下对复合材料施加低压,以闭合复合材料上的大孔。否则,熔融的粘结剂可能流到模头的表面。一旦温度达到预定最大温度,即可施加制作碳复合材料所需的期望压力。温度和压力可保持在预定最大温度和预定最大压力下,保持约5分钟到约120分钟。在一个实施例中,预定温度为粘结剂熔点的约±20℃到约±100℃,或者为粘结剂熔点的±20℃到约±50℃。

该阶段的还原比(即碳复合材料的体积相对于生坯的体积)为约10%到约70%或约20到约40%。可通过控制压缩程度改变碳复合材料的密度。碳复合材料密度为约0.5到约10g/cm3、约1到约8g/cm3、约1到约6g/cm3、约2到约5g/cm3、约3到约5g/cm3或约2到约4g/cm3

可选地,再次参照两步工艺,该组合可先在室温和约500psi到30000psi的压力下被压缩,以形成坯块;坯块可进一步在约350℃到约1200℃的温度下,具体地在约800℃到约1200℃的温度下加进行加热,以制备碳复合材料。在一个实施例中,温度为粘结剂熔点的约±20℃到约±100℃,或者为粘结剂熔点的±20℃到约±50℃。在另一个实施例中,温度可高于粘结剂的熔点约20℃到约100℃或高于粘结剂熔点约20℃到约50℃。可在存在或不存在惰性气氛的大气压力下进行加热。

在另一个实施例中,可从石墨和粘结剂的组合中直接制备碳复合材料,而不制备生坯。压缩和加热可同时进行。适当的压力和温度可以与本文中对两步工艺中第二步所讨论的相同。

热压是一种同时施加温度和压力的工艺。其可用在一步或两步工艺中,以制备碳复合材料。

可通过一步或两步工艺在模型中制备碳复合材料箔。也可通过热轧来制备碳复合材料箔。在一个实施例中,由热轧制备的碳复合材料箔可进一步进行加热,以使得粘结剂将碳微结构有效地粘结起来。

碳复合材料箔可直接使用。如图2所示,碳复合材料的SEM表征根据本公开的一个实施例示出:80%以上的碳复合材料由石墨相覆盖。因此,碳复合材料为聚合物/单体的粘合提供了足够的表面区域。可选地,碳复合材料箔的一侧或两侧可粗糙化处理或在将碳复合材料箔置于基材上之前增大碳复合材料箔的表面。示例性方法包括砂磨、研磨或喷砂。粗糙化的表面提供了更多的粘结区域。此外,粗糙化的表面可通过机械联锁促进聚合物涂层对碳复合材料层的粘附。

接枝可形成第二粘结层和碳复合材料层之间的共价键。例如,可通过将聚合物/单体上的官能团与碳复合材料层的碳上的官能团进行反应使得聚合物或单体接枝到碳复合材料层。如本文所用,“接枝”包括“接枝到”和“接枝自”的方法。接枝到的方法包括通过碳复合材料层上的官能团接枝端官能聚合物。可在聚合物的溶液中或从聚合物熔体中进行反应。例如,端官能聚合物的溶液或分散体可被涂覆在设置在基材上的碳复合材料层上。之后,涂覆有端官能聚合物的层压结构可进行加热,以将端官能化的聚合物接枝到碳复合材料层。

接枝自的方法指的是在设置在基材上的碳复合材料层上原位合成共价附着聚合物的方法。可采用聚合物合成的已知机制用于“接枝自”的方法。按照反应机制,引发剂可共价附着到碳复合材料表面。对于自由基聚合,可使用偶氮引发剂、过氧化物或光引发剂。

涂料组合物包括本文在聚合物涂层上下文中所描述的聚合物。可选地,涂料组合物还包括交联剂。基于涂料组合物中聚合物的重量,交联剂的含量可为从0.1wt%到15wt%,具体地从0.5wt%到10wt%,更具体地从0.5wt%到5wt%。

涂料组合物可通过任意适当方法,诸如但不限于层压、浸涂、喷涂、辊涂、旋转铸造、逐层涂覆或Langmuir-Blodgett涂覆等,涂覆在第二粘结层上。之后,在室温下或者在大于室温的高温下运行的恒温箱中(具体地大于或等于80℃,更具体地大于或等于90℃,且更加具体地大于或等于100℃),涂层被干燥。涂层可进一步被固化以强化或提供保护性的、可溶且耐磨的基质,其中固化可为热固化;使用电离或非电离辐射的辐射,包括可见光或紫外光、电子束或x射线等;化学固化,例如通过暴露于诸如酸或碱的活性固化剂的固化;或其他。

图1示出了涂覆基材的示例性工艺。如图1所示,包括石墨1和粘结剂2的碳复合材料层3首先设置在基材4上。之后,碳复合材料层结合到基材上,形成第一粘结层5。之后,单体、第一聚合物或其组合被接枝在碳复合材料层3的表面上,形成第二粘结层6。最后,聚合物涂层7被形成在第二粘结层上(图2(d)中未示出)。

包括此类涂层的制品可用于很多种应用,包括但不限于电子装置、原子能、热金属处理、涂覆、航空、汽车、油气和航海应用。例如,示例性制品包括井下工具、管、管道、流动控制设备、过滤器、膜、筛砂器、马达盖、网、片、封隔器元件、防喷器元件、潜水泵马达保护器袋、传感器保护器、抽油杆、O形环、T形环、垫片、泵轴密封件、管密封件、阀密封件、电子部件的密封件、电子部件的绝缘器或钻孔马达的密封件。

本文所公开的所有范围都包括端点,并且这些端点可以彼此独立地组合。本文所用的修饰语“多个”旨在包括其修饰的术语的单数和复数形式,从而包括该术语的至少一个(例如,多种着色剂包括至少一种着色剂)。“或”表示“和/或”。“可选的”或“可选地”表示随后描述的事件或情形可发生或可不发生,并且该描述包括该事件发生的例子和该事件不发生的例子。如本文所用,“组合”包括共混物、混合物、合金、反应产物等。“其组合”表示“包括一个或多个所列事物并且可选地包括未列出的相似事物的组合”。全部参照通过引用并入本文。

除非另外指明或上下文中明显矛盾,在描述本发明的上下文中(特别是在权利要求书中的上下文)的术语“一”、“一个”或“该”和相似指示物解释为包括单个和多个。此外,应该进一步指出,本文中术语“第一”、“第二”等不指代任何顺序、数量或重要性,而是用于元素彼此之间的区分。与数量联用的修饰语“约”包括所指出的值,具有上下文所示的意义(例如,它包括与具体的量的测量相关的误差程度)。

尽管出于说明目的阐述了典型的实施例,但前面的描述不应被认为是对本文范围的限制。因此,在不违背本文精神和范围的情况下,本领域技术人员可以想到不同的改进、调整以及替换。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号