首页> 中国专利> 还原炉的露点控制方法以及还原炉

还原炉的露点控制方法以及还原炉

摘要

本发明提供还原炉的露点控制方法以及还原炉,即便对于Si添加钢也可确保密合性,能够不过度提高合金化温度而进行合金化处理,能够得到镀覆外观优异的熔融镀锌钢板。在利用至少在还原炉中具有辐射管型炉的连续熔融镀锌设备对钢板实施退火和熔融镀锌处理时,使用通过具有水蒸气透过膜的加湿装置加湿后的气体和干燥气体的混合气体来作为向还原炉供给的气体,通过将上述混合气体供给到还原炉内来控制还原炉内的露点。

著录项

  • 公开/公告号CN106029932A

    专利类型发明专利

  • 公开/公告日2016-10-12

    原文格式PDF

  • 申请/专利权人 杰富意钢铁株式会社;

    申请/专利号CN201580010513.3

  • 申请日2015-02-18

  • 分类号C23C2/02(20060101);C23C2/40(20060101);

  • 代理机构11227 北京集佳知识产权代理有限公司;

  • 代理人李洋;青炜

  • 地址 日本东京都

  • 入库时间 2023-06-19 00:42:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-15

    授权

    授权

  • 2016-11-09

    实质审查的生效 IPC(主分类):C23C2/02 申请日:20150218

    实质审查的生效

  • 2016-10-12

    公开

    公开

说明书

技术领域

本发明涉及还原炉(reducing furnace)的露点控制方法以及还原炉。

背景技术

近年来,汽车、家电、建材等领域中,可用于构造物的轻型化等的高张力钢板(高强度钢材)(high-tensile strength steel)的需要不断提高。作为高强度钢材(high-tensile strength steel),例如,已知通过钢中含有Si而得到扩孔性(hole expandability)良好的钢板;另外通过含有Si、Al而得到容易形成残留γ(retainedγ)延展性良好的钢板。

但是,制造以含有大量Si的高强度钢板为母材的熔融镀锌钢板(hot-dip galvanized steel sheet)和合金化熔融镀锌钢板(hot-dip galvannealed steel sheet)的情况下,存在以下问题。熔融镀锌钢板在非氧化性氛围中或还原性氛围中以600~900℃左右的温度进行加热退火后,进行熔融镀锌处理。然而,钢中的Si为易氧化性元素(easily oxidizable element),在一般使用的非氧化性氛围中或还原性氛围中被选择性氧化,表面浓化而形成氧化物。该氧化物使镀覆处理时的与熔融锌的润湿性降低而产生未镀覆(bare spot),因此钢中Si浓度增加,并且润湿性(wettability)急剧降低,未镀覆频繁发生。另外,即使不产生未镀覆的情况下,也存在镀覆密合性差的问题。并且,如果钢中的Si被选择性氧化而在表面浓化,则在熔融镀锌后的合金化过程中产生显著的合金化延迟。结果,严重阻碍生产率。如果为了确保生产率而欲过度地以高温进行合金化处理,则也会有导致耐粉化性(anti-powdering properties)劣化的问题,难以兼得高生产率和良好的耐粉化性。

针对这样的问题,例如,专利文献1和专利文献2中公开了如下方法:使用直火型加热炉(DFF)(direct fired furnace)或无氧化炉(NOF)(non-oxidation furnace),使钢板表面暂时氧化后,在还原带还原而使Si内部氧化,抑制Si表面浓化,提高熔融镀锌润湿性和密合性。

另外,专利文献3中公开了如下方法:用使气体通过温水中的方法将供给气体加湿,用密封装置对炉内进行分割控制,将退火炉内的H2浓度和露点控制在规定范围而使Si内部氧化,提高熔融镀锌润湿性和密合性。

专利文献4中公开了向加热炉内直接喷射水蒸气来调整露点的方法。

专利文献1:日本特开2010-202959号公报

专利文献2:日本特开2011-117069号公报

专利文献3:WO2007/043273号公报

专利文献4:日本特开2005-264305号公报

发明内容

然而,专利文献1和2中记载的方法中,虽然还原后的镀覆密合性良好,但是内部氧化量容易不足,因钢中含有Si的影响,合金化温度与通常相比为30~50℃高温,存在钢板的拉伸强度、延展性降低的问题。如果为了确保足够的内部氧化量而增加氧化量,则在炉内辊附着氧化皮钢板产生按压缺陷(pressed-in flaw),产生所谓的粘损现象(ピックアップ現象),因此不能采取单纯增加氧化量的方法。

专利文献3中记载的方法中,如果因外部气温变动、钢板的种类而导致带进炉内的水分量变化,则由于该变化而加湿气体露点容易变动,难以稳定地控制在最佳露点范围。

专利文献4中记载的方法中,可知如果向炉内直接供给水蒸气,则局部产生达到10℃以上的高露点的区域,如果钢板通过该区域,则氧化到基体铁而引起粘损现象。

本发明鉴于上述情况,目的在于提供还原炉的露点控制方法和还原炉,即便对于Si添加钢也能够确保镀覆密合性,能够不过度地提高合金化温度而进行合金化处理,能够得到镀覆外观优异的熔融镀锌钢板。

用于解决上述课题的本发明的要旨如下。

[1]一种还原炉的露点控制方法,其特征在于,在利用至少具有辐射管型还原炉的连续熔融镀锌设备对钢板实施退火和熔融镀锌处理时,使用通过具有水蒸气透过膜(water vapor permeable membrane)的加湿装置加湿后的气体和干燥气体的混合气体来作为向还原炉供给的气体,通过将上述混合气体供给到还原炉内来控制还原炉内的露点。

[2]根据上述[1]所述的还原炉的露点控制方法,其特征在于,将上述还原炉内的露点控制在-20℃~0℃。

[3]一种还原炉,构成连续熔融镀锌设备的一部分,其中,具备:加湿装置,其具有水蒸气透过膜,将向还原炉供给的干燥气体的一部分加湿;循环恒温水槽,其将控制在规定温度后的规定流量的水供给到上述加湿装置;气体混合装置,其将通过上述加湿装置加湿后的气体和干燥气体混合;气体供给配管,其将通过上述气体混合装置混合后的混合气体供给到还原炉内;以及供给气体用露点计,其对向还原炉内供给的混合气体的露点进行计测。

[4]根据上述[3]所述的还原炉,还具备气体分配装置,上述气体分配装置将向还原炉供给的干燥气体的一部分分配到加湿装置,将剩余的干燥气体供给到气体混合装置。

[5]根据上述[3]或[4]所述的还原炉,其特征在于,上述加湿装置具有供加湿后的气体通过的配管,上述配管被保温在加湿后的气体的露点以上的温度。

根据本发明,能够高精度地控制还原炉的露点,所以即便对于含有0.1质量%以上Si的钢,也能够在不降低生产率的情况下稳定地制造具有漂亮表面外观的熔融镀锌钢板。另外,能够不受气温、天气等外部干扰的影响,非常稳定地制造熔融镀锌钢板。

附图说明

图1是表示本发明的连续熔融镀锌设备的一和实施方式的图。

图2是表示本发明的还原炉内的一个实施方式的图。

图3是表示鼓泡方式的加湿装置的图。

图4是表示还原带的中段的露点随着时间变化的图。

具体实施方式

以下,对本发明的实施方式进行具体说明。

作为对钢板实施退火和熔融镀锌处理来制造熔融镀锌钢板时使用的连续熔融镀锌设备的退火炉的类型,有对钢板进行升温加热的加热炉为DFF(直火型)或者NOF(无氧化型)且对加热后的钢板进行均热的均热炉为辐射管(RTF)型的退火炉;从加热炉到均热炉全部为辐射管的全辐射管型的退火炉等。

本发明中,将具备辐射管的炉部分称为还原炉。即,在加热炉为DFF(直火型)或者NOF(无氧化型)且均热炉为辐射管(RTF)型的退火炉中,将均热炉作为还原炉。在从加热炉到均热炉全部为辐射管的全辐射管型的退火炉中,还原炉为从加热炉到均热炉。

而且,如果使用本发明的还原炉的露点控制方法,则加热炉为DFF(直火型)或者NOF(无氧化型)且均热炉为辐射管(RTF)型的退火炉、全辐射管型的退火炉都能够高精度地控制还原炉内的露点,即便含有大量Si等易氧化性元素的钢板的情况下也能够确保镀覆性。

图1是表示具备退火炉和镀覆装置的连续熔融镀锌设备的一个构成例的图。图1中,1为钢板,2为直火型加热带(DFF),3为还原炉(辐射管型),4为快速冷却带,5为缓慢冷却带,6为镀覆装置。

钢板1在直火型加热带(DFF)2中加热(氧化处理工序),接着,在还原炉3中被还原(还原退火工序),然后,通过快速冷却带4、缓慢冷却带5冷却(冷却工序),用镀覆装置6进行镀覆处理。

图2是表示图1所示的还原炉3的结构,表示本发明的还原炉的一个实施方式的图。图2中,表示还原炉(辐射管型)3中的向炉内供给的气体的供给路线。图2中,7为加湿装置,8为循环恒温水槽,9为气体混合装置,10为气体分配装置,11为供给气体用露点计,12为炉内露点采取位置(3处位置),13为气体供给配管。

根据图2,利用气体分配装置10,将向还原炉供给的气体(干燥气体)的一部分作为加湿用气体向加湿装置7分配,将剩余的干燥气体送入气体混合装置9。作为气体,为N2气或将N2气和H2气混合后的气体中的任一种。

在加湿装置7中,输送通过气体分配装置10分配后的加湿用气体的同时,输送利用循环恒温水槽8控制在规定流量的规定温度后的水、优选为纯水。

加湿装置7具有加湿组件,该加湿组件具有氟系树脂(fluorinated resin)或聚酰亚胺系的中空纤维膜(hollow fiber membrane)或平板膜(flat membrane)等作为水蒸气透过膜,利用气体分配装置10分配后的加湿用气体在膜的内侧流动,利用循环恒温水槽8调整为规定温度后的水在膜的外侧流动、循环。

这里,氟树脂系或聚酰亚胺系的中空纤维膜或平板膜是与水分子具有亲和力的离子交换膜的一种。若在中空纤维膜(平板膜)的内侧和外侧产生水分浓度差,则产生欲使该浓度差均衡的力,水分以该力为推动力透过膜向低的水分浓度的一方移动。由此,上述加湿用气体成为被加湿到与在膜的外侧循环的水的温度相同的露点的气体。

被上述加湿装置7加湿后的气体,作为通过气体混合装置9与由气体分配装置10输送的干燥气体混合并向还原炉供给的气体、即供给气体,在气体供给配管13通过向还原炉内供给。

在还原炉内设置有3处炉内露点采取位置12,来测定还原炉内的露点。然后,一边接受测定结果,监视供给气体用露点计11,一边将供给气体露点、流量控制在适当范围,将还原炉内露点调整在所希望的范围。

通常,向还原炉3时常供给露点-60℃~-40℃的干燥的N2气或将N2和H2混合后的气体。与此相对,本发明中,用加湿装置7将干燥气体的一部分加湿,用气体混合装置9将用加湿装置7加湿的气体与干燥气体混合并调整成规定的露点气体,之后,将其供给到还原炉3内。干燥气体温度随着季节或1天的气温变化而变化。然而,本发明的加湿气体由于充分取得通过了水蒸气透过膜的气体与水的接触面积而进行热交换,即便加湿装置前的干燥气体温度比循环水温高或者低,也成为加湿到与设定水温相同的露点的气体,因此不受季节或1天的气温变化的影响。能够实现高精度的露点控制。加湿气体可以在0℃~50℃的范围任意控制。

还原炉3内,如果为+10℃以上的露点,则钢板基体铁开始氧化,因此优选供给到还原炉3内的气体的露点不足+10℃。另外,基于还原炉内露点分布的均匀性、使露点变动幅度最小化的理由,优选0℃以下。

如果向炉内供给的气体的露点比配管周围的外部气温高,则有在配管内结露,结露后的水直接浸入炉内的可能性。因而,优选供向炉内供给的气体通过的配管被加热并保温到加湿后的气体的露点以上的温度。

图2中,设置3处炉内露点采取位置12,在多处位置测定露点。在还原炉3的高度方向的上部、下部和中央部这3点。作为还原炉内气体成分包含N2、H2O的情况下,通常,相对于占40~95vol%的N2,H2O的比重轻,所以容易滞留在还原炉3的上部,有还原炉3上部的露点变高的趋势。如上所述,露点在+10℃以上的情况下,产生粘损等问题,因此针对管理还原炉3内的露点的上限的意义,重要的是还原炉3上部的露点测定。另一方面,针对管理钢板的大部分所接触的区域的露点的意义,重要的是测定还原炉3中央部和还原炉3下部。这样,优选在还原炉3的高度方向的上部、下部和中央部这3点以上的位置管理露点,决定向还原炉3内供给的气体的露点。

综上所述,根据图1、图2,在还原炉(还原退火工序)中,能够进行高精度的露点的控制,在还原退火工序中,将氧化处理工序中形成在钢板表面的铁氧化物还原,并利用从铁氧化物供给的氧,将Si、Mn的合金元素作为内部氧化物在钢板内部形成。结果,在钢板最表面形成由铁氧化物还原得到的还原铁层,Si、Mn作为内部氧化物滞留在钢板内部,在钢板表面的Si、Mn的氧化得到抑制,防止钢板和热浸的润湿性的降低,能够得到不发生未镀覆的良好的镀覆密合性。

然而,虽然得到良好的镀覆密合性,但含Si钢中的合金化温度变成高温,引起残余奥氏体相向珠光体相的分解、马氏体相的回火软化,有时得不到所希望的机械特性。因此,进行了用于降低合金化温度的技术的研究,结果规划如下技术:通过更积极地形成Si的内部氧化,而降低钢板表层的固溶Si量,促进合金化反应。为了更积极地形成Si的内部氧化,有效的是将退火炉内的氛围露点控制在-20℃以上。

如果将还原退火炉内的露点控制在-20℃以上,则由铁氧化物供给氧而形成Si的内部氧化物后,由氛围H2O供给的氧继续引起Si的内部氧化,因此形成更多的Si的内部氧化。这样,在形成内部氧化的钢板表层的内部的区域,固溶Si量降低。如果固溶Si量降低,则钢板表层显示像低Si钢那样的行为,促进其后的合金化反应,在低温下进行合金化反应。合金化温度降低的结果是,能够得到由残余奥氏体相能以高分率维持所导致的延展性的提高,不进行马氏体相的回火软化而能够得到所希望的强度。在还原炉3内,如果达到+10℃以上的露点时,则钢板基体铁开始氧化,因此基于还原炉内露点分布的均匀性、使露点变动宽度最小化的理由,优选以上限为0℃进行管理。

实施例1

加热炉为DFF(直火型)且均热炉为辐射管(RTF)型的连续熔融镀锌设备中,对由表1所示的组成成分构成的钢板实施退火和熔融镀锌处理。接着,进行合金化处理,制造合金化熔融镀锌钢板。

加热炉中,使用将加热用炉子分为4组(#1~#4)的DFF,钢板移动方向上游侧的3组(#1~#3)(前段)为氧化区域,最终区域(#4)(后段)为还原区域,分别单独控制氧化区域和还原区域的空气比。此外,各区域的长度为4m。

作为均热炉,使用图2所示的还原炉。加湿装置是聚酰亚胺系的中空纤维膜式加湿装置。如图2所示,在将加湿后的气体和干燥气体混合后向还原炉供给。如图2所示,供给气体供给口在炉下部有3处,在炉中段有3处。

中空纤维膜式加湿装置由10台膜组件构成,最大500L/min的N2+H2混合气体和最大10L/min的循环水在各组件中流动。为了用于投入还原炉而预先对N2+H2混合气体进行成分调整,露点为-50℃且恒定,但到还原炉之前的配管随外部气温而变化,因此气体温度变为外部气温。因此,将上述配管以成为加湿后的气体的露点以上的温度的方式保温。循环恒温水槽计可以供给100L/min的纯水。

将其他制造条件示于表2。此外,镀覆液温度为460℃,镀覆液中Al浓度为0.130%,附着量通过气体吹扫(gas wiping)调整为每单面45g/m2。对合金化温度而言,以被膜合金化度(Fe含有率)为10~13%内的方式,用感应加热式合金化炉进行合金化处理。

为了比较,作为均热炉,使用现有的鼓泡(bubbling)方式的加湿装置(图3)。在鼓泡方式中,在1组水槽内对相同的气体量、循环水量进行混合、加湿。

此外,除加湿装置以外,与上述实施例相同。

对以上得到的合金化熔融镀锌钢板,评价镀覆外观、材料强度。

镀覆外观的评价利用光学表面缺陷计进行检查(检测φ0.5mm以上的未镀覆缺陷、过氧化性缺陷)并通过目视观察进行合金化不均判定,全部项目合格为○,只要1个不合格即为×。

材料强度用拉伸强度进行评价,对于拉伸强度,钢种A为590MPa以上为合格,钢种B为780MPa以上为合格,钢种C为1180MPa以上为合格。

此外,表2中的No1~12表示冬季的实施结果,No.13~24表示夏季的实施结果。将以上得到的结果与条件一并示于表2。此外,表中的时间为操作经过时间,No.1和13是从现有的利用鼓泡的加湿装置切换到具有水蒸气透过膜的加湿装置的时刻的结果。另外,操作开始后1小时30分钟后再次切换到现有的利用鼓泡的加湿装置。

[表1] (质量%)

钢记号CSiMnPSA0.080.251.50.030.001B0.121.41.90.010.001C0.152.12.80.010.001

[表2]

根据表2,冬季时,在本发明例的No.2~7中,能够将炉内的露点稳定地控制在-10℃~-20℃内,因此表面外观、材料强度都合格。另一方面,在按现有方法的鼓泡方式进行的No.1,8~12的比较例中,加湿装置前气体温度低,即便鼓泡也无法充分进行热交换,因此露点不上升,无法提高炉内露点。结果,合金化温度上升而无法确保目标拉伸强度。露点稳定性也存在问题。

夏季时,在本发明例的No.14~19中,能够将炉内的露点稳定地控制-10℃~-20℃内,表面外观、材料强度都合格。在按现有方法的鼓泡方式进行的No.13,20~24的比较例中,相反气体温度不彻底下降,加湿后气体露点处于非常高的状态,因此露点过度上升。结果,虽然合金化温度降低,但是很明显地看出合金不均。在露点超过0℃的No.21~24中,产生由粘损引起的按压缺陷。

图4是由表2所示的时间与还原带的中段露点的关系得到的露点变动。图4中,在时间:0分钟时,由鼓泡的加湿装置向具有水蒸气透过膜的加湿装置的切换,在时间:1小时30分(操作开始后1小时30分后)时,再次向现有的鼓泡的加湿装置切换。由图4可知本发明例中不论夏季、冬季,都能够在短时间内控制在所希望的露点。

符号说明

1…钢板;2…直火型加热带(DFF);3…还原炉(辐射管型);4…快速冷却带;5…缓慢冷却带;6…镀覆装置;7…加湿装置;8…循环恒温水槽;9…气体混合装置;10…气体分配装置;11…供给气体用露点计;12…炉内露点采取位置(3处);13…气体供给配管。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号