首页> 中国专利> 一种能抑制高共模电压的直流电压放大器

一种能抑制高共模电压的直流电压放大器

摘要

本发明涉及一种能抑制高共模电压的直流电压放大器,包括输入线圈、反馈线圈、输出线圈、斩波开关、交流带通放大器、解调器、低通滤波放大器、反馈电阻以及控制器;输入线圈通过输入信号斩波开关与输入信号相连接;反馈线圈通过反馈信号斩波开关与反馈电阻R2相连接;输出线圈的同名端与交流带通放大器的正向输入端连接,输出线圈的另一端与交流带通放大器的负向输入端连接;交流带通放大器的输出端与解调器的输入端连接,解调器的输出端与低通滤波放大器的输入端连接,输出电压V

著录项

  • 公开/公告号CN105978517A

    专利类型发明专利

  • 公开/公告日2016-09-28

    原文格式PDF

  • 申请/专利权人 西安航天计量测试研究所;

    申请/专利号CN201610431302.3

  • 申请日2016-06-16

  • 分类号

  • 代理机构西安智邦专利商标代理有限公司;

  • 代理人张倩

  • 地址 710100 陕西省西安市15号信箱7分箱

  • 入库时间 2023-06-19 00:34:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-05-25

    授权

    授权

  • 2016-10-26

    实质审查的生效 IPC(主分类):H03F3/45 申请日:20160616

    实质审查的生效

  • 2016-09-28

    公开

    公开

说明书

技术领域

本发明涉及放大器技术,特别是一种高共模电压抑制技术,电压放大电路具有很高的共模电压承受能力和很高的共模电压抑制能力。

背景技术

在火箭发动机试验等现场测试环境,测试设备距离被测信号距离长,共模电压高,要求测量设备和校准设备具有很高的共模电压适应能力和抑制能力。在航天液体火箭发动机现场试验系统的校准装置研制中,要求放大器的直流共模电压适应能力为400V,直流共模电压抑制比达到180dB;要求放大器的交流共模电压适应能力为200V,交流共模电压抑制比达到150dB。而一般放大器的共模电压抑制能力约为100dB,一些高共模抑制放大器的直流共模电压抑制比可以达到120~150dB,交流共模电压抑制比可以达到100~120dB,共模电压只能达到几伏,不能满足航天液体火箭发动机现场试验系统的校准需求。

如图1所示为现有的一种放大器结构示意图,该放大器采用仪用运算放大器的差分放大模式,具有较高的共模抑制能力,共模电压抑制比可以达到100dB,但是共模电压适应范围不能超过供电电源电压范围,一般为十几伏。

如图2所示,现有的一些运算放大器,采用差分输入、用恒流源替代高值电阻的方法以及激光调整对称性的工艺方法,虽然大大提高了放大器的共模抑制比,最高直流共模电压抑制比可以达到150dB,但是共模电压适应范围不能超过供电电源电压范围,一般为十几伏。

总之,现有放大器的共模电压适应能力和共模电压抑制能力,均不能满足航天液体火箭发动机现场试验系统的校准需求。

发明内容

为了解决现有放大器的共模电压适应能力和共模电压抑制能力不能满足航天液体火箭发动机现场试验系统的校准需求的问题,本发明提供一种高共模电压抑制比放大器。

本发明的技术方案如下:

一种能抑制高共模电压的直流电压放大器,其特殊之处在于:包括输入线圈4、反馈线圈5、输出线圈6、环形高磁导率磁芯15、输入信号斩波开关(S1,S2)、反馈信号斩波开关(S3,S4)、交流带通放大器9、解调器11、低通滤波放大器12、反馈电阻R1、反馈电阻R2以及控制器7,所述输入线圈4通过高绝缘材料隔离,绕制在高磁导率磁芯15上;输入线圈通过输入信号斩波开关(S1,S2)与输入信号相连接;

所述反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上;反馈线圈通过反馈信号斩波开关(S3,S4)与反馈电阻R2相连接;

所述输入线圈和反馈线圈的匝数相等,均为n1匝,输入线圈4的同名端与输入信号斩波开关S1连接,反馈线圈的同名端与反馈信号斩波开关S3连接;

所述输出线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上,输出线圈的匝数为n2匝,n2>n1,所述输出线圈的同名端与交流带通放大器9的正向输入端连接,所述输出线圈4的另一端与交流带通放大器9的负向输入端连接;所述交流带通放大器9的输入端与输出线圈相连接,所述交流带通放大 器9的输出端与解调器11的输入端连接,所述解调器11的输出端与低通滤波放大器12的输入端连接,所述低通滤波放大器12的输出端输出电压Vo,输出电压Vo经过反馈电阻R1和反馈电阻R2分压后与反馈线圈相连接;

所述控制器产生3个控制信号,控制信号一控制输入信号斩波开关S1和反馈信号斩波开关S4同步动作;控制信号二与控制信号一反相,控制输入信号斩波开关S2和反馈信号斩波开关S3同步动作;控制信号三与控制信号一同相,控制解调器工作。

交流带通放大器9的通带中心频率与斩波开关工作频率相同。

输入信号斩波开关控制电源由光电池一提供;光电池一的低端与输入线圈的中点连接。

反馈信号斩波开关控制电源由光电池二提供;光电池二的低端与反馈线圈的中点连接。

3个控制信号均采用光耦或者磁耦进行隔离。

上述交流带通放大器9和解调器11之间还设置有隔直电容C。

本发明的技术效果如下:

1、本发明利用光耦合和磁耦合,进行输入信号、控制信号、反馈信号能量的传递,实现输入回路与其它多路的高度绝缘,使得放大器具有很高的共模电压承受能力和很高的共模电压抑制能力。

2、采用本发明的技术方案,具有很好的共模电压适应能力和共模电压抑制能力。共模电压≥100V,共模电压抑制比≥150dB。

附图说明

图1为现有仪用运算放大器的差分放大器。

图2为现有放大器提高共模电压抑制能力原理图。

图3为实施本发明的电路结构原理图。附图标记列示如下:1-仪用运算放大器的差分放大模式;2-差分输入端;3-恒流源;4-输入线圈;5-反馈线圈;6-输出线圈;7-光电隔离模块;9-交流带通放大器;11-解调器;12-低通滤波放大器;15-环形高磁导率磁芯;16-放大器输入端;17-放大器输出端,18-光电池一,19-光电池二。

具体实施方式

下面结合附图3对本发明进行说明。

一种能抑制高共模电压的直流电压放大器,包括放大器输入端16、输入线圈4、反馈线圈5、输出线圈6、环形高磁导率磁芯15、输入信号斩波开关(S1,S2)、反馈信号斩波开关(S3,S4)、交流带通放大器9、解调器11、低通滤波放大器12、反馈电阻R1、反馈电阻R2和低通滤波放大器输出端17。

输入线圈4通过高绝缘材料隔离,绕制在高磁导率磁芯上;输入线圈通过输入输入信号斩波开关(S1,S2)与输入信号相连接,输入信号斩波开关控制电源由光电池一提供;光电池一的低端与输入线圈的中点连接。

反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上;反馈线圈通过反馈信号斩波开关(S3,S4)与反馈电阻R2相连接,反馈信号斩波开关控制电源由光电池二提供;光电池二的低端与反馈线圈的中点连接。

控制器发出3个控制信号,控制信号一控制输入信号斩波开关S1和反馈信号斩波开关S4同步动作(同时闭合或同时断开);控制信号二与控制信号一反相,控制输入信号斩波开关S2和反馈信号斩波开关S3同步动作。控制信号三与控制信号一同相,控制解调器工作。3个控制信号均采用光耦或者磁 耦进行隔离。

输入线圈和反馈线圈的匝数相等,均为n1匝,*号为同名端。

输出线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上,输出线圈匝数为n2匝,n2>n1,n2/n1=k1,*号为同名端。

交流带通放大器9的输入端与输出线圈相连接,交流带通放大器9的通带中心频率与斩波开关工作频率相同。交流带通放大器9将输出线圈输出的交流电压放大k2倍,k2为交流带通放大器的放大系数,交流带通放大器的输出端经过隔直电容与解调器11的输入端相连接。

解调器与控制器7同步工作,将双极性交流信号转换为单极性的脉动信号。

低通滤波放大器12的输入端与解调器11的输出端相连接,将单极性的脉动电压信号转换为直流电压信号,并放大k3倍;k3为低通滤波放大器的放大系数。

低通滤波放大器12输出端与反馈电阻R1和放大器输出端OUT相连接。放大器输出端的输出电压经过反馈电阻R1和反馈电阻R2分压后与反馈线圈相连接。

能抑制高共模电压的放大器,经过负反馈自动调节后,进入稳定状态,放大器输出端输出电压为:

Vo=(1+R1R2)×Vi

图3为实施本发明的电路结构原理图。如图3所示,所发明的能抑制高共模电压的放大器包括放大器输入端、输入线圈、反馈线圈、输出线圈、环形高磁导率磁芯、输入信号斩波开关、反馈信号斩波开关、交流带通放大器、 解调器、低通滤波放大器、反馈电阻R1、反馈电阻R2和放大器输出端。输入线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上,并通过斩波开关与输入信号相连接,斩波开关控制电源由电池提供,电池的低端与输入线圈的中点连接。反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上,并通过斩波开关与反馈电阻R2相连接,反馈线圈的斩波开关控制电源由另一个电池提供,电池的低端与反馈线圈的中点连接。输入线圈和反馈线圈的匝数相等,均为n1匝,*号为同名端。控制器发出3个控制信号,控制信号x1控制斩波开关S1和S4同步动作(同时闭合或同时断开);控制信号x2与控制信号x1反相,控制斩波开关S2和S3同步动作。控制信号x3与控制信号1同相,控制解调器工作。3个控制信号均采用光耦(或者磁耦)进行隔离。输出线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上,斩波器控制电源由光电池二提供,光电池二的低端与反馈线圈的中点连接;输出线圈匝数为n2匝,n2>n1,n2/n1=k1,*号为同名端。控制器与斩波开关利用光电耦合器(磁耦合器)传递控制信号,实现电路隔离。交流带通放大器的输入端与输出线圈相连接,通带中心频率与斩波开关工作频率相同。交流带通放大器将输出线圈输出的交流电压放大k2倍。交流带通放大器的输出端经过隔直电容与解调器的输入端相连接。控制器控制解调器与斩波器同步工作,将双极性交流信号转换为单极性的脉动信号,并通过相位控制实现输出端与输入端同相。低通滤波放大器的输入与解调器的输出端相连接,将单极性的脉动电压信号转换为直流电压信号,并放大k3倍;低通滤波放大器输出端与反馈电阻R1和放大器输出端OUT相连接。放大器输出端的输出电压经过反馈电阻R1和反馈电阻R2分压后与反馈线圈相连接。发明的能抑制高共模电压的放大器,经过负反馈 自动调节后,进入稳定状态,放大器输出端输出电压为:

对本发明的进一步详细说明如下:

如图3所示,在本实施例中输入线圈和反馈线圈为2000匝,输出线圈为10000匝,电感量160mH,斩波开关工作频率为100kHz,输入阻抗100kΩ。输出线圈与输入线圈的匝比k1为10,交流放大器的噪声降低10倍。交流带通放大器在中心频率附近的传输系数为103;解调器的电压传递系数为0.5;低通滤波放大器对于直流电压传递系数为105;前向通道的电压传递系数为5×108;反馈电阻R2采用精密金属箔电阻,阻值为9.99kΩ;反馈电阻R1采用精密金属箔电阻,阻值为10Ω;放大器放大倍数为1+999=1000。

开环增益对闭环放大倍数的影响2×10-9,可以忽略不计;

输入阻抗对闭环放大倍数的影响为:R2/Ri=10Ω/100kΩ=10-4;考虑到输入阻抗与线圈电感量和工作频率有关,其值相对比较稳定。因此,通过放大倍数校准后,只有输入阻抗的变化量影响闭环放大倍数。输入阻抗的相对变化量≤5/100,输入阻抗变化对闭环放大倍数的影响为R2/Ri×5/100=5×10-6

交流放大器的共模抑制比为100dB,供电电压为±15V时的最大共模电压为±14V。

本实施方案中,输入线圈与其它线圈的绝缘采用聚四氟乙烯材料,直流绝缘电阻≥1012Ω,耐压≥1kV;输入线圈与其它线圈的交流绝缘阻抗≥3×108Ω,交流耐压≥500V;直流共模电压经过绝缘电阻和反馈电阻R2的分压,通过R2上的压降对放大器产生共模影响,因此,直流共模电压抑制比为:

CMRRDC=20×log(1012/10)=220(dB)

直流共模电压适应能力为1kV;

直交流共模电压经过绝缘交流阻抗和反馈电阻R2的分压,通过R2上的交流电压压降,对放大器产生交流共模影响。因此,交流共模电压抑制比为:

CMRRAC=20×log(3×108/10)=150(dB)

交流共模电压适应能力为500V。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号