首页> 中国专利> 二维钛酸盐纳米材料及其制备方法

二维钛酸盐纳米材料及其制备方法

摘要

本发明公开了一种二维钛酸盐纳米材料及其制备方法。其中二维钛酸盐纳米材料包括改性的质子化钛酸盐薄膜,改性的质子化钛酸盐薄膜具有有机基团和掺杂的Cr元素。该二维钛酸盐纳米材料通过掺杂Cr元素有利于拓宽二维钛酸盐纳米材料的吸收带宽,使在吸收紫外光的同时还能够吸收可见光,进而大大提高了其光吸收、光电转换的效率,从而提高光催化效率。并通过掺杂有机基团这种相对大分子作为纳米片的平衡介质,使所制备的二维钛酸盐纳米材料不易卷曲,具有相对稳定的二维结构,进而具有相对较大的表面积,从而进一步提高了光催化效率。

著录项

  • 公开/公告号CN105800676A

    专利类型发明专利

  • 公开/公告日2016-07-27

    原文格式PDF

  • 申请/专利权人 比亚迪股份有限公司;

    申请/专利号CN201410856488.8

  • 发明设计人 詹燕妹;

    申请日2014-12-31

  • 分类号C01G23/00(20060101);B01J21/06(20060101);B82Y30/00(20110101);

  • 代理机构11283 北京润平知识产权代理有限公司;

  • 代理人李婉婉;金迪

  • 地址 518118 广东省深圳市坪山新区比亚迪路3009号

  • 入库时间 2023-06-19 00:11:02

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-05-29

    授权

    授权

  • 2017-02-08

    实质审查的生效 IPC(主分类):C01G23/00 申请日:20141231

    实质审查的生效

  • 2016-07-27

    公开

    公开

说明书

技术领域

本发明涉及光催化领域,具体地,涉及一种二维钛酸盐纳米材料及其制 备方法。

背景技术

层状化合物是优良的有害离子和气体吸附剂,同时可用作无机物的高活 性的复合催化剂及催化剂载体,可实现对水的裂解;无机层状化合物由于其 特有的层状结构,为诸多化学反应提供了一个纳米级反应空间,同时,剥离 后的纳米级单片层可作其它纳米结构的基本单元。

无机层状化合物的结构是二维层板纵向有序排列形成三维晶体结构,层 板内原子间多为共价键结合,层间为范德华力或弱化学离子键,层间距离一 般在几纳米之间。钛酸纳米晶是一种宽带隙半导体,广泛应用于光催化剂、 气体传感器、太阳能电池;利用它的离子交换性,可用于污水处理。

在现有技术中一种常规合成纳米级钛酸片单晶体包括:以氢氧化钠+氢 化钾为碱类熔融剂、以二氧化钛为钛酸原料、以去离子水为清洗剂、洗涤剂 和萃取剂,以无水乙醇为洗涤剂和干燥载体,在常压0.1MPa下,在200℃ 低温下,合成纳米级钛酸片单晶体。

由上述现有的技术制备出的钛酸片易卷曲成管状变成一维结构,使其表 面积相对较小,且在光催化领域应用中光的吸收带宽仅在紫外光区,对光的 利用率不高,这就造成了现有的这种纳米级钛酸片单晶体的催化效率较低。

发明内容

本发明的目的是为了改善现有二维钛酸盐纳米材料光的吸收带宽仅在 紫外光区,对光的利用率不高的问题,提供一种二维钛酸盐纳米材料及其制 备方法。

为了实现上述目的,根据本发明的一个方面,提供了一种二维钛酸盐纳 米材料包括改性的质子化钛酸盐薄膜,所述改性的质子化钛酸盐薄膜具有有 机基团和掺杂的Cr元素。

根据本发明的另一个方面,提供了一种二维钛酸盐纳米材料的制备方 法,该制备方法包括以下步骤:以碱金属碳酸盐和无定型TiO2为原料,制 备质子化的层状钛酸盐;在热处理条件下,使质子化钛酸盐与重铬酸盐接触 反应,形成掺杂Cr的层状钛酸盐;以及在搅拌条件下,使所述掺杂Cr的层 状钛酸盐与有机胺在液相基质中接触反应,剥离形成所述二维钛酸盐纳米材 料。

本发明上述技术方案,通过在二维钛酸盐纳米材料中掺杂Cr元素,有 利于拓宽二维钛酸盐纳米材料的吸收带宽,使其同时还能够吸收可见光,进 而大大提高了其光吸收、光电转换的效率,从而进一步提高光催化效率

同时,通过在二维钛酸盐纳米材料中掺杂分子量相对较大的有机基团作 为纳米片的平衡介质,使其不易卷曲,具有相对稳定的二维结构,进而具有 相对较大的表面积,从而提高了光催化效率。

本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。

附图说明

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与 下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在 附图中:

图1是根据本发明实施例1所制备二维钛酸盐纳米材料的TEM照片(单 位长度为50nm);

图2是根据本发明实施例1所制备二维钛酸盐纳米材料的TEM照片(单 位长度为200nm);

图3是根据本发明实施例1所制备二维钛酸盐纳米材料的原子力显微镜 测试图谱;

图4是根据本发明实施例1所制备二维钛酸盐纳米材料的UV-vis吸收 光谱图谱;以及

图5是根据本发明对比例2所制备二维钛酸盐纳米材料的UV-vis吸收 光谱图谱。

具体实施方式

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发 明。

在本发明中术语“质子化钛酸盐”是指将碱金属钛酸盐中的碱金属阳离 子替换成氢离子的一种化合物。术语“改性的质子化钛酸盐薄膜”是指通过 有机基团和Cr元素对质子化钛酸盐薄膜改性所形成的改性薄膜。

正如背景技术部分所介绍的,在现有技术中存在光催化领域应用中光的 吸收带宽仅在紫外光区,对光的利用率不高的问题,为了改善这一问题,本 发明发明人提供了一种二维钛酸盐纳米材料含有改性的质子化钛酸盐,该改 性的质子化钛酸盐具有有机基团和掺杂的Cr元素。

本发明上述技术方案,通过在二维钛酸盐纳米材料中掺杂Cr元素,有 利于拓宽二维钛酸盐纳米材料的吸收带宽,使其同时还能够吸收可见光,进 而大大提高了其光吸收、光电转换的效率,从而进一步提高光催化效率

同时,通过在二维钛酸盐纳米材料中掺杂分子量相对较大的有机基团作 为纳米片的平衡介质,使其不易卷曲,具有相对稳定的二维结构,进而具有 相对较大的表面积,从而提高了光催化效率。

在本发明中对于所掺杂的Cr元素的掺杂量并没有特殊要求,只要掺杂 Cr元素就能够实现拓宽二维钛酸盐纳米材料的吸收带宽的目的。在本发明中 对于所掺杂的有机基团的掺杂量并没有特殊要求,只要其分子结构相对于质 子化钛酸盐的晶体结构略大,使得二维钛酸盐纳米材料在一定范围内横向延 伸即可。在本发明的一种优选实施方式中,上述改性的质子化钛酸盐薄膜中 含有2-15wt.%的有机基团,13-32wt.%的Cr元素。将Cr的含量限定在该范 围内有利于增强钛酸盐晶格的稳定性,并改善其光吸收带边。将有机基团的 含量限定在该范围内有利于在同时提高二维钛酸盐纳米材料的光催化效率 与横向尺寸。

在本发明中对于上述有机基团并没有特殊要求,只要其能够掺杂在二维 钛酸盐纳米材料中,且对二维钛酸盐纳米材料的应用无不良影响即可。在本 发明中优选上述有机胺的重均分子量为250-450;有机基团的重均分子量的 太小,对于质子化的层状钛酸盐的层间结合力(剥离效率)的影响不明显, 而重均分子量的太大,有可能将层状物包裹缠绕,发生团聚,影响剥离效果, 将其分子量设置在该范围内具有有利于在得到所需剥离产物的同时,提高相 应的提高效率)的效果。在本发明中优选有机基团是由质子化钛酸盐与有机 胺反应引入,优选地在本发明中可以使用的有机胺包括但不限于四丁基氢氧 化铵、乙胺、聚乙烯亚胺、二乙胺基和四甲基胺中中的一种或多种。

在本发明的一种优选实施方式中,所述二维钛酸盐纳米材料还包括分 散在所述改性的质子化钛酸盐薄膜表面的烷酮类分散剂。本发明上述二维钛 酸盐纳米材料,通过在二维钛酸盐纳米材料的制备过程中,在质子化的层状 钛酸盐中加入烷酮类分散剂,利用烷酮类分散剂所特有的分散作用,促使质 子化的层状钛酸盐易于剥离,且剥离后得到二维钛酸盐纳米材料不易再复 合,进而形成稳定的二维钛酸盐纳米材料。

同时,由于在所制备的二维钛酸盐纳米材料中引入了酮类分散剂,有利 于促进二维钛酸盐纳米材料自身不易结合,进而使其不易卷曲,具有相对稳 定的二维结构,进而具有相对较大的表面积。

优选地,上述烷酮类分散剂与所述改性的质子化钛酸盐的重量比为1-5: 100,更为优选上述烷酮类分散剂的重均分子量为100-200,烷酮类分散剂的 重均分子量太小,其所起到的促进剥离的效果不明显,而重均分子量的太大, 其有可能将剥离产物包裹缠绕,发生团聚,影响剥离效果,将其分子量设置 在该范围内具有缩短剥离时间,提高剥离效率的效果。优选地,在本发明中 可以使用的烷酮类分散剂包括但不限于N-乙基吡咯烷酮、N-甲基砒咯烷酮 和N-乙烯基砒咯烷酮中的一种或多种。

在本发明的一种优选实施方式中,上述所述二维钛酸盐纳米材料与厚度 方向相垂直的横截面长度为0.1-100μm(宽度小于等于长度),所述二维钛酸 盐纳米材料的厚度为1-10nm。

本发明所述二维钛酸盐纳米材料可以参照现有技术中制备二维钛酸盐 纳米材料的方法制备,只要在制备质子化的层状钛酸盐后向其中掺杂Cr,并 混入有机胺、和可选的烷酮类分散剂即可。

在本发明的一种优选实施方式中,还提供了一种二维钛酸盐纳米材料的 制备方法,该制备方法包括以下步骤:以碱金属碳酸盐和无定型TiO2为原 料,制备质子化的层状钛酸盐;在热处理条件下,使质子化钛酸盐与重铬酸 盐接触反应,形成掺杂Cr的层状钛酸盐;在搅拌条件下,使所述质子化的 层状钛酸盐与有机胺在液相基质中接触反应,剥离形成所述二维钛酸盐纳米 材料。

本发明所提供的上述方法,通过采用热处理的方式使质子化钛酸盐与重 铬酸盐接触反应,以所制备的二维钛酸盐纳米材料的钛酸盐晶格中掺杂的 Cr元素,进而增强钛酸盐晶格的稳定性的同时,拓宽二维钛酸盐纳米材料的 吸收带宽,使其同时还能够吸收可见光,进而大大提高了其光吸收、光电转 换的效率。

同时,通过在质子化的层状钛酸盐中加入分子量相对较大的有机胺,利 用有机胺中铵根或氢氧根易于与氢离子发生反应的特点,通过与位于质子化 的层状钛酸盐层间的氢离子发生反应,使有机基团进入到质子化的层状钛酸 盐层间,进而将质子化的层状钛酸盐的层间结合力,使其易于剥离。

在本发明上述方法中,对于热处理的条件并没有特殊要求,只要能促使 Cr3+与钛酸盐发生反应形成杂化物即可。然而,为了降低能耗,提高产品质 量,优选热处理条件为,热处理温度为300~600℃,热处理时间为5~10h。 优选重铬酸盐与质子化的层状钛酸盐的重量比为0.3~0.6:1。优选可以使用 的重铬酸盐包括但不限于重铬酸铵、重铬酸钾、重铬酸钠中的一种或多种。

在本发明上述方法中对于搅拌条件并没有特殊要求,只要提供一定的驱 动力,使质子化的层状钛酸盐与有机胺在液相基质中接触反应即可。然而为 了获得厚度相对较小的二维钛酸盐纳米材料,在本发明中优选搅拌条件为: 搅拌速度100-180rpm,搅拌时间1-14天。

在本发明上述方法中,优选有机胺与所述质子化的层状钛酸盐的重量比 为10-25:100,优选有机胺的重均分子量为250-450;优选可以使用的有机 胺包括但不限于四丁基氢氧化铵、乙胺、聚乙烯亚胺、二乙胺基和四甲基胺 中的一种或多种;优选可以使用的钛酸盐包括但不限于钛酸钾、钛酸钠、钛 酸锂、钛酸铷、钛酸铯中的一种或多种。

在本发明上述方法中,用于为质子化的层状钛酸盐与有机胺在液相基质 中接触反应,以及为二维钛酸盐纳米材料剥离提供条件的液相基质包括但不 限于水、乙醇、丙醇和异丙醇中的一种或多种。

在本发明的一种优选实施方式中,上述二维钛酸盐纳米材料的制备方法 中在使所述质子化的层状钛酸盐与有机胺在液相基质中接触反应的步骤后, 还包括:在超声震荡条件下,向液相基质中进一步加入烷酮类分散剂,使烷 酮类分散剂与质子化的层状钛酸盐混合接触的步骤。

本发明上述维钛酸盐纳米材料的制备方法中,通过在质子化的层状钛酸 盐中加入烷酮类分散剂,利用烷酮类分散剂所特有的分散作用,与分子量相 对较大的有机胺相配合,促使质子化的层状钛酸盐易于剥离,且剥离后得到 二维钛酸盐纳米材料因为表面附着有烷酮类分散剂,使得位于液相基质中的 二维钛酸盐纳米材料间不易再次复合,进而有利于形成稳定的二维钛酸盐纳 米材料。

在本发明上述方法中,优选烷酮类分散剂与所述质子化的层状钛酸盐化 合物的重量比为1-5:100。优选烷酮类分散剂的重均分子量为100-200。优 选可以使用的烷酮类分散剂包括但不限于N-乙基吡咯烷酮、N-甲基砒咯烷 酮和N-乙烯基砒咯烷酮中的一种或多种。

在上述方法中,在同时进行搅拌接触和超声震荡接触的条件下,对于搅 拌条件和超声震荡条件并没有特殊要求,只要在搅拌的状态下加入有机胺, 在超声震荡的条件下加入烷酮类化合物即可。然而,为了形成横截面长度(与 厚度相垂直的方向)相对较大,且厚度相对较小的二维钛酸盐纳米材料,优 选搅拌条件为,搅拌速度100-180rpm,搅拌时间1-5天;优选超声震荡条件 为,超声频率为25-40KHZ,震荡时间为1-5天。

在本发明上述方法中,对制备质子化的层状钛酸盐的步骤并没有特殊要 求,参照本领域常规的工艺方法即可。在本发明的一种优选实施方式中,上 述制备质子化的层状钛酸盐的步骤包括:将碱金属碳酸盐和无定型TiO2混 合研磨,得到混合粉末;将所述混合粉末焙烧,固相反应得到层状钛酸盐粉 末;将所述层状钛酸盐粉末加酸酸洗后水洗至中性,烘干,得到质子化的层 状钛酸盐。

在上述方法中将碱金属碳酸盐和无定型TiO2混合研磨的步骤中,优选 将碱金属碳酸盐和无定型TiO2按1:3.3~7.3摩尔比混合研磨,优选得到粒径 为0.2-0.6μm的混合粉末;优选可以使用的碱金属碳酸盐包括但不限于碳酸 钾、碳酸钠和碳酸铷中的一种或多种。

在上述方法中将所述混合粉末焙烧的步骤中,对于混合粉末焙烧的条件 并没有特殊要求,然而,为了使得固相反应的充分进行,以得到较为完整且 横截面长度较大的层状结构,在本发明中优选焙烧条件为在700~1100℃下焙 烧20~40小时。

在上述方法对层状钛酸盐粉末加酸酸洗的步骤中,对于酸洗的步骤并没 有特殊要求,只要能够将层状钛酸盐粉末形成质子化的层状钛酸盐即可。然 而,为了简化操作,在本发明中优选加酸酸洗的步骤包括:酸洗1-3次,每 次酸洗过程中,酸洗温度为15-40℃,酸洗时间为15-25h。优选地,每次酸 洗过程中,以每克层状钛酸盐加入H+浓度为1mol/L的酸液的量为75-85ml, 优选地,可以使用的酸液包括但不限于为盐酸、硫酸、硝酸中的一种或多种。

同时,在本发明中还提供了一种由上述任意一种二维钛酸盐纳米材料的 制备方法制得的二维钛酸盐纳米材料。

以下将结合具体实施例进一步说明本发明二维钛酸盐纳米材料及其制 备方法的有益效果。

实施例1

(一)、二维钛酸盐纳米材料制备方法包括:

(1)通过选用碳酸钠(分析纯)和无定型TiO2(分析纯)为原料,将 二者按1:5.3摩尔比混合研磨,形成平均粒度为400nm的混合粉末;

(2)将混合粉末在700℃中煅烧40小时进行高温固相反应预先制得层 状钛酸盐粉末;

(3)将层状钛酸盐加入浓度为1mol/L的盐酸溶液(分析纯)中搅拌酸 洗15h,每克层状钛酸盐加入盐酸的量为75ml,酸洗3次后再将样品水洗至 中性,烘干过滤,得到质子化的层状钛酸盐;

(4)在烘干后的质子化钛酸盐中加入重铬酸胺(重铬酸胺与质子化的 层状钛酸盐的重量比为0.6:1),在400℃中热处理8h,得到掺杂铬的层状 钛酸盐;

(5)将掺杂铬的层状钛酸盐与四丁基氢氧化铵(四丁基氢氧化铵与质 子化的层状钛酸盐的重量比为5:100)加入到液相基质水中,以150rpm的 速度搅拌3天;加入N-乙基砒咯烷酮(N-乙基砒咯烷酮与质子化的层状钛 酸盐化合物的重量比为1:100),以超声频率为25KHZ,超声震荡1天,剥 离形成所述二维钛酸盐纳米材料。

(二)、二维钛酸盐纳米材料的测定

(1)所制备的二维钛酸盐纳米材料的原料组成检测。

测定方法:

①取实施例1剥离得到的二维钛酸盐纳米材料用Agilent公司生产的气 相色谱联用仪(型号AgilentGC6890-5975IMS)测定烷酮分散剂的含量。

②采用常规透析方法去除实施例1剥离得到的二维钛酸盐纳米材料中的 烷酮分散剂,测量去除烷酮分散剂后的改性质子化钛酸盐薄膜的原料组成。

将去除烷酮分散剂后的改性质子化钛酸盐薄膜晶型冷冻干燥然后进行 物相分析,采用荷兰日本理学公司D/maxUltimaⅢ型XRD分析仪。主要参 数如下:靶材为Cu(λ=0.15405nm,40kV,30mA);步长为0.01°,该实 验的XRD测试角度范围为3-80°,测得钛酸盐的含量。

将去除烷酮分散剂后的改性质子化钛酸盐薄膜晶型冷冻干燥后采用 Philips-FEI公司XL30ESEM-TMP型号的扫描电子显微镜,加速电压为20 KV,进行能谱分析,测定Cr3+含量。

取去除烷酮分散剂后的改性质子化钛酸盐薄膜用Agilent公司生产的气 相色谱联用仪(型号AgilentGC6890-5975IMS)测定有机胺的含量。

测定结果:二维钛酸盐纳米材料中含有0.7wt.%N-乙基砒咯烷酮,去除 烷酮分散剂后的改性质子化钛酸盐薄膜中含有62wt.%钛酸(质子化钛酸盐)、 4.5wt.%的有机基团(C4H9)4N-,32wt.%的Cr元素,及杂质1.5%。

(2)所制备的二维钛酸盐纳米材料的与厚度方向相垂直的横截面的长 度测定。

测量方法:将剥离终产物通过10000rpm/min离心,离心时间为15min 然后取上清液,采用日本JEOL公司JEM-2010型透射电子显微镜,加速电 压设置为200KV观察钛酸盐的形貌与尺寸大小。

测量结果:如图1和图2所示为样品部分形貌图。其横截面的长度约达 20μm。

(3)所制备的二维钛酸盐纳米材料的厚度测定。

测量方法:将剥离终产物通过10000rpm/min离心,离心时间为15min 然后取上清液,采用美国Agilent公司5500型号原子力显微镜,扫描器分辨 率为XY:0.2nm,进行测试分析。

测量结果:如图3所示。由图3可以看出,终产物中的钛酸盐纳米薄膜 厚度为1nm。

实施例2

(一)、二维钛酸盐纳米材料制备方法包括:

(1)通过选用碳酸铷(分析纯)和无定型TiO2(分析纯)为原料,将 二者按1:3.3摩尔比混合研磨,形成平均粒度为400nm的混合粉末;

(2)将混合粉末在1100℃中煅烧30小时进行高温固相反应预先制得层 状钛酸盐粉末;

(3)将层状钛酸盐加入浓度为1mol/L的盐酸溶液(分析纯)中搅拌酸 洗25h,每克层状钛酸盐加入盐酸的量为80ml,酸洗3次后再将样品水洗至 中性,烘干过滤,得到质子化的层状钛酸盐;

(4)在烘干后的质子化钛酸盐中加入重铬酸胺(重铬酸胺与所述质子 化的层状钛酸盐的重量比为25:100),在300℃中热处理10h,得到掺杂铬 的层状钛酸盐;

(5)将掺杂铬的层状钛酸盐与二乙胺(二乙胺与质子化的层状钛酸盐 的重量比为8:100)加入到液相基质水中,以150rpm的速度搅拌5天;加 入N-甲基砒咯烷酮(N-甲基砒咯烷酮与质子化的层状钛酸盐化合物的重量 比为3:100),以超声频率为25KHZ,超声震荡2天,剥离形成所述二维钛 酸盐纳米材料。

(二)、二维钛酸盐纳米材料的测定

所制备的二维钛酸盐纳米材料的原料组成检测。

测定方法:同实施例1。

测定结果:二维钛酸盐纳米材料中含有2.5wt.%N-甲基砒咯烷酮,去除 烷酮分散剂后的改性质子化钛酸盐薄膜中含有79wt.%钛酸(质子化钛酸盐) 掺杂13%的Cr元素、6.7wt.%的有机基团(C2H5)2N-,及杂质1.3%。

实施例3

(一)、二维钛酸盐纳米材料制备方法包括:

(1)通过选用碳酸钠(分析纯)和无定型TiO2(分析纯)为原料,将 二者按1:7.3摩尔比混合研磨,形成平均粒度为400nm的混合粉末;

(2)将混合粉末在1000℃中煅烧20小时进行高温固相反应预先制得层 状钛酸盐粉末;

(3)将层状钛酸盐加入浓度为1mol/L的盐酸溶液(分析纯)中搅拌酸 洗20h,每克层状钛酸盐加入盐酸的量为85ml,酸洗3次后再将样品水洗至 中性,烘干过滤,得到质子化的层状钛酸盐;

(4)在烘干后的质子化钛酸盐中加入重铬酸胺(重铬酸胺与所述质子 化的层状钛酸盐的重量比为45:100),在600℃中热处理5h,得到掺杂铬的 层状钛酸盐;

(5)将掺杂铬的层状钛酸盐与四甲基胺(四甲基胺与质子化的层状钛 酸盐的重量比为15:100)加入到液相基质水中,以100rpm的速度搅拌2 天;加入N-乙烯基砒咯烷酮(N-乙烯基砒咯烷酮与质子化的层状钛酸盐化 合物的重量比为5:100),以超声频率为25KHZ,超声震荡5天,剥离形成 所述二维钛酸盐纳米材料。

(二)、二维钛酸盐纳米材料的测定

所制备的二维钛酸盐纳米材料的原料组成检测。

测定方法:同实施例1。

测定结果:二维钛酸盐纳米材料中含有4.3wt.%N-乙基砒咯烷酮,去除 烷酮分散剂后的改性质子化钛酸盐薄膜中含有61.8wt.%钛酸(质子化钛酸 盐),掺杂23.5%Cr元素、13wt.%的有机基团(CH3)4N-,及杂质1.7%。

实施例4

(一)、二维钛酸盐纳米材料制备方法包括:参照实施例1,其中区别在 于:

(5)将掺杂铬的层状钛酸盐与四丁基氢氧化铵(四丁基氢氧化铵与质 子化的层状钛酸盐的重量比为7:100)加入到液相基质水中,以150rpm的 速度搅拌10天剥离形成二维钛酸盐纳米材料。

(二)、二维钛酸盐纳米材料的测定

(1)所制备的二维钛酸盐纳米材料的原料组成检测。

测定方法:同实施例1。

测定结果:二维钛酸盐纳米材料(不含有烷酮分散剂后的改性质子化钛 酸盐薄膜)中含有61.2wt.%钛酸(质子化钛酸盐),掺杂32%Cr元素、6.4wt.% 的有机基团(C4H9)4N-,及杂质0.4%。

实施例5

(一)、二维钛酸盐纳米材料制备方法包括:参照实施例1,其中区别在 于:

步骤(4)中,重铬酸胺与质子化的层状钛酸盐的重量比为30:100;

步骤(5)中,四丁基氢氧化铵与质子化的层状钛酸盐的重量比为4:100, N-乙基砒咯烷酮与质子化的层状钛酸盐化合物的重量比为6:100。

(二)、二维钛酸盐纳米材料的测定

(1)所制备的二维钛酸盐纳米材料的原料组成检测。

测定方法:同实施例1。

测定结果:二维钛酸盐纳米材料中含有5.2wt.%N-乙基砒咯烷酮,去除 烷酮分散剂后的改性质子化钛酸盐薄膜中含有81.2wt.%钛酸(质子化钛酸 盐),掺杂14.8%Cr元素、3.5wt.%的有机基团(C4H9)4N-,及杂质0.5%。

对比例1

钛酸盐纳米材料制备方法包括:

以氢氧化钠+氢化钾为碱类熔融剂、以二氧化钛为钛酸原料、以去离子 水为清洗剂、洗涤剂和萃取剂,以无水乙醇为洗涤剂和干燥载体,在常压 0.1MPa下,在200℃低温下,合成管状(一维)钛酸盐纳米材料。

对比例2

(一)、二维钛酸盐纳米材料制备方法包括:参照实施例1,其中区别在 于:不包括步骤(4),且步骤(5)如下:

(5)烘干后的质子化钛酸盐与四丁基氢氧化铵(四丁基氢氧化铵与质 子化的层状钛酸盐的重量比为5:100)加入到液相基质水中,以160rpm的 速度搅拌3天;加入N-乙基砒咯烷酮(N-乙基砒咯烷酮与质子化的层状钛 酸盐化合物的重量比为1:100),以超声频率为30KHZ,超声震荡1天,剥 离形成所述二维钛酸盐纳米材料。

(二)、二维钛酸盐纳米材料的测定

(1)所制备的二维钛酸盐纳米材料的原料组成检测。

测定方法:同实施例1。

测定结果:二维钛酸盐纳米材料中含有0.73wt.%N-乙基砒咯烷酮,去除 烷酮分散剂后的改性质子化钛酸盐薄膜中含有95wt.%钛酸(质子化钛酸盐)、 4.7wt.%的有机基团(C4H9)4N-,及杂质0.3%。

测试一:

(一)测试项目及方法:

吸收带宽测试:使用Shimadzu公司UV-2450型分光光度计,取实施例 1至5以及对比例2所制备的二维钛酸盐纳米材料适量,离心后取上清液在 蒸馏水适当的稀释,取分散均匀的样品悬浮液注入光程为10mm的石英比 色皿中进行测试。

(二)测试结果:如图4-5。

图4是根据本发明实施例1所制备二维钛酸盐纳米材料(掺杂有Cr3+) 的吸收光谱(实施例2-5与其相仿),其中分别包括二维钛酸盐纳米材料浓 度为0.015ppm、0.021ppm、0.026ppm、0.031ppm及0.037ppm时的吸收光谱 曲线,图5是根据对比例2所制备二维钛酸盐纳米材料(未掺杂有Cr)的吸 收光谱,其中分别包括二维钛酸盐纳米材料浓度为0.014ppm、0.015ppm、 0.019ppm、0.023ppm及0.025ppm时的吸收光谱曲线。

由图4和图5可以看出:对比例2中未参照Cr的二维钛酸盐纳米材料 的吸收带宽大致在260nm,仅位于紫外光区。而本发明实施例1掺杂Cr后 的二维钛酸盐纳米材料的吸收带边在包含260nm(紫外光驱)的情况下,同 时拓展到约450nm(可见光)的范围中。且由图4和图5对比可以看出,二 者的吸光度随着浓度的增大而增大因此可以说明此种薄膜在液相基质中呈 准分子水平分散。

测试二:

(一)测试项目及方法。

(1)厚度(最小)测试方法:将实施例1至5以及对比例1和2剥离 终产物通过10000rpm/min离心,离心时间为15min然后取上清液,采用美 国Agilent公司5500型号原子力显微镜,扫描器分辨率为XY:0.2nm,进行测试分析;

(2)横截面长度(最大)测试方法:将实施例1至5以及对比例1和2 剥离终产物通过10000rpm/min离心,离心时间为15min然后取上清液,采 用日本JEOL公司JEM-2010型透射电子显微镜,加速电压设置为200KV观 察钛酸盐的形貌与尺寸大小;

(3)吸收光波长的测试方法:使用Shimadzu公司UV-2450型分光光度 计,取实施例1至4以及对比例1-2所制备的二维钛酸盐纳米材料适量,离 心后取上清液在蒸馏水适当的稀释,取分散均匀的样品悬浮液注入光程为10 mm的石英比色皿中进行测试;

(4)光电转化效率的测试方法:将铟锡氧化物导电玻璃(ITO)在超声 器中依次用丙酮、去离子水、无水乙醇清洗、吹干;将实施例1至5所制备 的钛酸盐纳米材料制备成一定浓度的纳米薄膜胶体,然后将胶体均匀涂于导 电玻璃的导电面上,常温自然晾干;用银导电胶在未涂膜的导电玻璃基底上 引出一根铜导线,并用绝缘胶将导线裸露部分及导电玻璃的边缘密封,即得 纳米管结构电极。

光电化学实验采用带石英窗口的三电极电解设备,以制备的ITO/纳米薄 膜为工作电极,采用饱和甘汞电极为参比电极,以Pt电极为对电极,以0.04 mol·L-1邻苯二甲酸氢钾溶液为底液的0.1mol·L-1KSCN溶液为支持电 解液,用恒电位仪(Potentiostat/GalvanostatModel263A)在测定光电流时进 行电位控制,以300W氙灯为光源,通过单色仪照在工作电极上,光强用 LPE-1A型激光功率/能量计标定。

(二)测试结果:如表1所示。

表1.

由表1中数据可以看出,本发明实施例1-5所制备的二维钛酸盐纳米材 料的光电转化效率远大于对比例1和2中钛酸盐纳米材料的光电转化效率。

本发明上述技术方案,通过在二维钛酸盐纳米材料中掺杂Cr元素,有 利于拓宽二维钛酸盐纳米材料的吸收带宽,使其同时还能够吸收可见光,进 而大大提高了其光吸收、光电转换的效率,从而进一步提高光催化效率。

同时,通过在二维钛酸盐纳米材料中掺杂分子量相对较大的有机基团作 为纳米片的平衡介质,使其不易卷曲,具有相对稳定的二维结构,进而具有 相对较大的表面积,从而提高了光催化效率。

以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限 于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明 的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特 征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必 要的重复,本发明对各种可能的组合方式不再另行说明。

此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其 不违背本发明的思想,其同样应当视为本发明所公开的内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号