首页> 中国专利> 贵金属加氢催化剂的制备方法、贵金属加氢催化剂及应用

贵金属加氢催化剂的制备方法、贵金属加氢催化剂及应用

摘要

一种贵金属加氢催化剂的制备方法、贵金属加氢催化剂、贵金属加氢催化剂的应用及润滑油基础油的制备方法,方法包括:将十元环结构分子筛及/或无机多孔材料制备成载体;将贵金属Pt、Pd、Ru、Rh、Re及Ir化合物中一种或几种与去离子水或酸溶液配成贵金属浸渍溶液;用去离子水配制有浓度梯度的贵金属浸渍溶液,浓度梯度范围为0.05~5.0ω%,在载体浸渍过程中,按照浸渍溶液浓度由低到高顺序浸渍到载体上,或配制低浓度的贵金属浸渍溶液,在浸渍过程中,逐步提高含有贵金属浸渍溶液的浓度,浸渍到载体上,低浓度范围为0.05~0.5ω%,逐步提高浸渍溶液的浓度至2.0~5.0ω%,均化、干燥、焙烧制得。本发明的催化剂活性和稳定性高、生产的润滑油基础油粘度指数高、倾点低。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-09-04

    授权

    授权

  • 2016-08-03

    实质审查的生效 IPC(主分类):B01J29/74 申请日:20141210

    实质审查的生效

  • 2016-07-06

    公开

    公开

说明书

技术领域

本发明涉及一种贵金属加氢催化剂及其制备方法及其在制备润滑油基 础油中的应用。

背景技术

随着全球对高档润滑油基础油需求量的逐年增长,同时环境保护要求 的逐渐提高,对优质的II类和III类高粘度指数的基础油显现出强劲的需求。 目前,加氢技术是生产高档润滑油基础油的主要手段,同时该技术手段也面 临着严峻的挑战,迫切需要开发出性能更优异、活性和稳定性更高的加氢技 术,以适应加工更加劣质的原料的趋势。

加氢技术的核心就在于开发高效的加氢催化剂。在润滑油基础油加氢 催化剂开发领域中,主要凸显出的问题在催化剂加氢异构性能不够,芳烃开 环能力不强,在保证基础油粘度指数和倾点的情况下,基础油收率不高,其 主要原因在于催化剂中贵金属活性中心利用不充分,贵金属分布不合理所致, 进而导致催化剂活性不高,另一方面,为提高催化剂的活性,而提高贵金属 含量,导致催化剂的生产成本居高不下。

目前在工业中,通常都是配制含固定的贵金属浓度的浸渍溶液,通过 饱和或过饱和浸渍到催化剂的载体上,在经过干燥、焙烧制成催化剂。美国 专利US4399058介绍了一种加氢催化剂的制备方法,是将VIB族和VIII族 金属盐与氨水混合,加氨水调节至某一pH值,制得固定浓度的贵金属溶液, 再将金属溶液饱和浸渍到无机氧化物载体上,然后干燥和焙烧,得到加氢催 化剂。

采用等体积饱和浸渍方法浸渍载体,得到的贵金属组分通常在载体上 分布比较均匀。对于主要发生在催化剂表面的催化反应来说,就会造成很大 贵金属浪费和损失,尤其对于贵金属为昂贵的贵金属(Pt、Pd、Ru、Rh、Re 和Ir等),必然会导致催化剂制备成本的提高。对于贵金属在催化剂中呈不 均匀分布,特别是呈梯度增加分布的加氢催化剂制备方法介绍甚少。

欧洲专利EP0204314介绍了一种不均匀贵金属组分分布的加氢催化剂 制备方法,制备过程中采用分步,多次浸渍的方法负载贵金属组分,即先把 活性组分A的溶液浸渍到载体上,再将载体经过水洗、干燥和焙烧,然后在 浸渍含有活性组分B的浸渍液,载体再经过水洗干燥和焙烧。这种采用分步 水洗、干燥和焙烧的制备方法,使得催化剂中颗粒内部的贵金属含量高于其 表面的金属含量,此种不均匀分布的催化剂与均匀分布的催化剂相比,催化 剂的使用寿命延长了,但是该制备方法过于复杂,制备过程中伴随着贵金属 损失,催化剂制备成本偏高。

中国专利CN101927176A公开了一种活性金属和酸性助剂浓度呈梯度增 加分布的加氢催化剂,在制备催化剂中选用无机化合物选自Al2O3或含SiO2、 TiO2、和/或ZrO2的Al2O3为载体,并没有提及引入分子筛作为载体,催化剂 中金属选取是以非金属催化剂为活性组分,以钼和/或钨和/或镍和/或钴化合 物为活性金属,在本技术领域中,该种类型催化剂活性金属负载量通常在质 量分数在10ω%以上,这是本技术领域所熟知的,对于这种高含量活性金属 在催化剂梯度增加分布是很容易实现的,而采用以贵金属活性组分,因贵金 属价格昂贵,所以其在催化剂中含量都很低,对于低含量贵金属组分实现在 催化剂中浓度呈梯度增加分布技术难度较大,并没有相关专利介绍,同时该 篇专利适用于非贵金属加氢领域催化剂制备及应用,该种类型催化剂主要应 用渣油加氢领域,而生产润滑油基础油领域加氢催化剂为贵金属催化剂,因 此公开专利的催化剂并不适合应用于润滑油基础油领域。

发明内容

本发明的目的在于提供一种贵金属加氢催化剂的制备方法、贵金属加 氢催化剂、贵金属加氢催化剂的应用及润滑油基础油的制备方法,以解决现 有技术贵金属组分在载体上分布比较均匀的缺陷。

为实现上述目的,本发明提供一种贵金属加氢催化剂的制备方法,包 括:

步骤1:将十元环结构分子筛及/或无机多孔材料制备成载体,所述十 元环结构分子筛选自ZSM-5、SAPO-11、EU-1、ITQ-13、ZSM-22、MCM-22、NU-87、 ZSM-23中的一种或几种,所述载体中含无机多孔材料的质量分数为10~ 90ω%;含分子筛的质量分数为5~80ω%;

步骤2:将贵金属Pt、Pd、Ru、Rh、Re和Ir化合物中一种或几种与去 离子水或酸溶液配成贵金属浸渍溶液,所述贵金属浸渍溶液的浓度为0.1~ 5.0ω%,采用等体积浸渍方法制备加氢催化剂,所述加氢催化剂中含有贵金 属质量分数为0.05~2.0ω%;

步骤3:用去离子水配制有浓度梯度的贵金属浸渍溶液,所述有浓度梯 度的贵金属浸渍溶液的浓度梯度范围为0.05~5.0ω%,在载体浸渍过程中, 按照浸渍溶液浓度由低到高顺序浸渍到载体上,或配制低浓度的贵金属浸渍 溶液,在浸渍过程中,逐步提高含有贵金属浸渍溶液的浓度,浸渍到载体上, 所述低浓度的贵金属浸渍溶液的低浓度范围为0.05~0.5ω%,逐步提高含有 贵金属浸渍溶液的浓度至2.0~5.0ω%,均化10分钟~3小时,然后在90~ 140℃干燥3~10小时,在450~600℃焙烧3~10小时。

其中,所述无机材料选自Al2O3、SiO2、Al2O3-SiO2、TiO2、Al2O3-TiO2、 ZrO2或Al2O3-ZrO2中的一种或几种。

其中,所述贵金属选自Pt、Pd、Ru和Re化合物中一种或两种,贵金 属占催化剂中含量优选质量分数为0.1~1.0ω%。

其中,所述步骤2中,制备的加氢催化剂中贵金属质量分数优选0.2~ 0.6ω%。

其中,所述步骤3中,制备的催化剂颗粒中贵金属组分的浓度从颗粒 中心到外表面逐渐增加,以催化剂的颗粒横截面的外接圆圆心为起点,外接 圆半径为R,在颗粒的外接圆圆心处与外接圆表面处金属含量比为0.1~0.6, 0.5R处与外表面处金属含量之比为0.4~0.8。

其中,步骤3中,逐步提高含有贵金属浸渍溶液的浓度的步骤为:在 浸渍过程中,将比低浓度的贵金属浸渍溶液浓度高的浸渍溶液匀速滴加到所 述低浓度的贵金属浸渍溶液中。

其中,贵金属加氢催化剂中贵金属组分的浓度从颗粒中心到外表面逐 渐增加,以催化剂的颗粒横截面的外接圆圆心为起点,外接圆半径为R,在 颗粒的外接圆圆心处与外接圆表面处金属含量比为0.1~0.6,0.5R处与外表 面处金属含量之比为0.4~0.8。

其中,所述贵金属选自Pt、Pd、Ru和Re化合物中一种或两种,所述 贵金属占催化剂中含量优选质量分数为0.05~2.0ω%。

其中,所述贵金属占催化剂中含量的质量分数为0.1~1.0ω%,较佳为 0.2~0.6ω%。

而且,为实现上述目的,本发明还提供一种润滑油基础油的制备方法, 采用上述方法所制备的贵金属加氢催化剂作为催化剂。

所述的润滑油基础油的制备方法中,在氢气气氛下,将含蜡烃原料与 所述贵金属加氢催化剂在催化剂床层中接触,流出产品得到低倾点、高粘度 指数、高收率的润滑油基础油。

所述的润滑油基础油的制备方法中,所述含蜡烃原料选自沸点高于350 ℃的加氢裂化尾油、或加氢处理后的减压馏分油、或蜡膏、或软膏。

所述的润滑油基础油的制备方法中,所述含蜡烃原料硫含量不大于 100μg/g;氮含量不大于100μg/g。

所述的润滑油基础油的制备方法中,所述含蜡烃原料硫含量不大于 50μg/g;氮含量不大于50μg/g。

而且,本发明还提供一种上述的贵金属加氢催化剂的制备方法所制备 的贵金属加氢催化剂在润滑油基础油制备中的应用。

本发明的贵金属加氢催化剂及其制备方法,其贵金属组分在催化剂颗 粒内部呈梯度增加分布,该种催化剂相对于现有技术来说,催化剂加氢活性 好、稳定性高,尤其在生产润滑油基础油领域效果更佳显著,催化剂的加氢 异构性能优异,芳烃饱和性能强,生产的润滑油基础油粘度指数高、倾点低、 基础油收率高,同时贵金属组分在催化剂中特殊梯度分布,使催化剂的负载 量降低下来,节约了催化剂的制备成本。并且,制备过程操作简单的优点, 应用前景广阔。

附图说明

图1为本发明中催化剂颗粒从中心到表面贵金属分布图;

图2为本发明中催化剂颗粒从中心到表面贵金属分布图。

具体实施方式

本发明提供一种贵金属加氢催化剂的制备方法,包括:

步骤1:将十元环结构分子筛及/或无机多孔材料制备成载体,所述十 元环结构分子筛选自ZSM-5、SAPO-11、EU-1、ITQ-13、ZSM-22、MCM-22、NU-87、 ZSM-23中的一种或几种,所述载体中含无机多孔材料的质量分数为10~ 90ω%;含分子筛的质量分数为5~80ω%;

步骤2:将贵金属Pt、Pd、Ru、Rh、Re和Ir化合物中一种或几种与去 离子水或酸溶液配成贵金属浸渍溶液,所述贵金属浸渍溶液的浓度为0.1~ 5.0ω%,采用等体积浸渍方法制备加氢催化剂,所述加氢催化剂中含有贵金 属质量分数为0.05~2.0ω%;

步骤3:用去离子水配制有浓度梯度的贵金属浸渍溶液,所述有浓度梯 度的贵金属浸渍溶液的浓度梯度范围为0.05~5.0ω%,在载体浸渍过程中, 按照浸渍溶液浓度由低到高顺序浸渍到载体上,或配制低浓度的贵金属浸渍 溶液,在浸渍过程中,逐步提高含有贵金属浸渍溶液的浓度,浸渍到载体上, 所述低浓度的贵金属浸渍溶液的低浓度范围为0.05~0.5ω%,逐步提高含有 贵金属浸渍溶液的浓度至2.0~5.0ω%,均化10分钟~3小时,然后在90~ 140℃干燥3~10小时,在450~600℃焙烧3~10小时。

其中,所述无机材料选自Al2O3、SiO2、Al2O3-SiO2、TiO2、Al2O3-TiO2、 ZrO2或Al2O3-ZrO2中的一种或几种。

其中,所述贵金属选自Pt、Pd、Ru和Re化合物中一种或两种,贵金 属占催化剂中含量优选质量分数为0.1~1.0ω%。

其中,所述步骤2中,制备的加氢催化剂中贵金属质量分数优选0.2~ 0.6ω%。

其中,所述步骤3中,制备的催化剂颗粒中贵金属组分的浓度从颗粒 中心到外表面逐渐增加,以催化剂的颗粒横截面的外接圆圆心为起点,外接 圆半径为R,在颗粒的外接圆圆心处与外接圆表面处金属含量比为0.1~0.6, 0.5R处与外表面处金属含量之比为0.4~0.8。

其中,步骤3中,逐步提高含有贵金属浸渍溶液的浓度的步骤为:在 浸渍过程中,将比低浓度的贵金属浸渍溶液浓度高的浸渍溶液匀速滴加到所 述低浓度的贵金属浸渍溶液中。

其中,贵金属加氢催化剂中贵金属组分的浓度从颗粒中心到外表面逐 渐增加,以催化剂的颗粒横截面的外接圆圆心为起点,外接圆半径为R,在 颗粒的外接圆圆心处与外接圆表面处金属含量比为0.1~0.6,0.5R处与外表 面处金属含量之比为0.4~0.8。

其中,所述贵金属选自Pt、Pd、Ru和Re化合物中一种或两种,所述 贵金属占催化剂中含量优选质量分数为0.05~2.0ω%。

其中,所述贵金属占催化剂中含量的质量分数为0.1~1.0ω%,较佳为 0.2~0.6ω%。

本发明还提供一种润滑油基础油的制备方法,采用上述方法所制备的 贵金属加氢催化剂作为催化剂。

所述的润滑油基础油的制备方法中,在氢气气氛下,将含蜡烃原料与 所述贵金属加氢催化剂在催化剂床层中接触,流出产品得到低倾点、高粘度 指数、高收率的润滑油基础油。

所述的润滑油基础油的制备方法中,所述含蜡烃原料选自沸点高于350 ℃的加氢裂化尾油、或加氢处理后的减压馏分油、或蜡膏、或软膏。

所述的润滑油基础油的制备方法中,所述含蜡烃原料硫含量不大于 100μg/g;氮含量不大于100μg/g。

所述的润滑油基础油的制备方法中,所述含蜡烃原料硫含量不大于 50μg/g;氮含量不大于50μg/g。

而且,本发明还提供一种上述的贵金属加氢催化剂的制备方法所制备 的贵金属加氢催化剂在润滑油基础油制备中的应用。

具体而言,本发明的贵金属加氢催化剂的制备过程包括:

步骤1:将十元环结构分子筛和/或无机多孔材料制备成载体,所述十 元环结构分子筛选自EU-1、ITQ-13、ZSM-22、MCM-22、NU-87、ZSM-23中的 一种或几种,所述载体中含无机多孔材料的质量分数为10~90ω%;含分子 筛的质量分数为5~80ω%;

步骤2:将贵金属Pt、Pd、Ru、Rh、Re和Ir化合物中一种或几种与去 离子水或酸溶液配成贵金属浸渍溶液,所述贵金属浸渍溶液的浓度为0.1~ 5.0ω%,采用等体积浸渍方法制备加氢催化剂,所述加氢催化剂中含有贵金 属质量分数为0.05~2.0ω%;

步骤3:用去离子水配制有浓度梯度的贵金属浸渍溶液,所述有浓度梯 度的贵金属浸渍溶液的浓度梯度范围为0.05~5.0ω%,在载体浸渍过程中, 按照浸渍溶液浓度由低到高顺序浸渍到载体上,或配制低浓度的贵金属浸渍 溶液,在浸渍过程中,逐步提高含有贵金属浸渍溶液的浓度,浸渍到载体上, 所述低浓度的贵金属浸渍溶液的低浓度范围为0.05~0.5%,逐步提高含有贵 金属浸渍溶液的浓度至2.0~5.0ω%,均化10分钟~3小时,然后在90~140 ℃干燥3~10小时,在450~600℃焙烧3~10小时,其中逐步提高含有贵金 属浸渍溶液的浓度的步骤为:在浸渍过程中,将比低浓度的贵金属浸渍溶液 浓度高的浸渍溶液匀速滴加到所述低浓度的贵金属浸渍溶液中。

催化剂制备过程中无机材料选自Al2O3、SiO2、Al2O3-SiO2、TiO2、 Al2O3-TiO2、ZrO2或Al2O3-ZrO2中的一种或几种。

在制备的催化剂颗粒中贵金属组分的浓度从颗粒中心到外表面逐渐增 加,以催化剂的颗粒横截面的外接圆圆心为起点,外接圆半径为R,在颗粒 的外接圆圆心处与外接圆表面处金属含量比为0.1~0.6,0.5R处与外表面处 金属含量之比为0.4~0.8。

在制备贵金属加氢催化剂过程中,本发明中所选的贵金属为Pt、Pd、 Ru、Rh、Re和Ir中的一种或几种贵金属化合物,优选Pt、Pd、Ru和Re化 合物中一种或两种,所述贵金属占催化剂中含量的质量分数优选为0.1~ 1.0ω%,更佳优选为0.2~0.6ω%。

本发明制备的贵金属加氢催化剂的制备方法可以是挤压成型、压片成 型、滴球成型,以挤压成型为优选;催化剂的外观形貌可以是球形、条形(圆 柱形、三叶草形、四叶草形)、拉西环,优选条形。

本发明制备的贵金属加氢催化剂主要用于生产优质润滑油基础油,润 滑油基础油的制备方法在于在氢气气氛下,将含蜡烃原料与贵金属加氢催化 剂在催化剂床层中接触,流出产品可得到优质低倾点、高粘度指数、高收率 的润滑油基础油。其中含蜡烃原料选自沸点高于350℃的加氢裂化尾油、或 加氢处理后的减压馏分油、或蜡膏、或软膏,同时含蜡烃原料硫含量不大于 100μg/g,优选不大于50μg/g;氮含量不大于100μg/g,优选不大于50μg/g。

实施例1

采用等体积浸渍方法制备催化剂。将载体中含45ω%Al2O3、 20ω%Al2O3-SiO2、10ω%SiO2和20ω%TiO2的无机多孔材料与含5ω%的EU-1 分子筛机械混捏制成载体,载体吸水率为0.60ml/g。

称200g载体,喷浸50ml含PtCl2浓度为0.05ω%浸渍溶液,在喷浸过 程中,将70ml含0.16ω%的PtCl2的稀盐酸浸渍溶液匀速滴加到上述浸渍液 中,30分钟滴加完毕。催化剂在喷浸设备中均化10分钟,在90℃干燥10 小时,在600℃焙烧3小时,制得催化剂A-1,其中制备的催化剂A-1中含 Pt质量分数为0.05%(催化剂质量计)。

实施例2

采用等体积浸渍方法制备催化剂。以载体中含20ω%Al2O3、 20ω%Al2O3-ZrO2、10ω%TiO2和10ω%Al2O3-TiO2的无机多孔材料与含 40ω%ITQ-13和ZSM-23分子筛机械混捏制成载体,载体吸水率为0.7ml/g。

称200g载体,喷浸50ml含PtCl2和PdCl2浓度为0.2ω%浸渍溶液,在 喷浸过程中,将90ml含0.7ω%的PtCl2和PdCl2的稀盐酸浸渍溶液匀速滴加 到上述浸渍液中,30分钟滴加完毕。催化剂在喷浸设备中均化3小时,在140 ℃干燥3小时,在450℃焙烧10小时,制得催化剂A-2,其中制备的催化剂 A-2中含Pt和Pd质量分数为0.2%(催化剂质量计)。

实施例3

采用等体积浸渍方法制备催化剂。以载体中含10ω%Al2O3-SiO2和 10ω%ZrO2的无机多孔材料与含40ω%MCM-22和40ω%ZSM-23分子筛机械混捏 制成载体,分子筛机械混捏制成载体,载体吸水率为0.75ml/g。

称200g载体,喷浸50ml含PtCl2和PdCl2浓度为0.4ω%浸渍溶液,在 喷浸过程中,将100ml含1.6ω%的PtCl2和PdCl2的稀盐酸浸渍溶液匀速滴加 到上述浸渍液中,30分钟滴加完毕。催化剂在喷浸设备中均化2小时,在100 ℃干燥6小时,在550℃焙烧6小时,制得催化剂A-3,其中制备的催化剂 A-3中含Pt和Pd质量分数为0.6%(催化剂质量计)。

实施例4

采用等体积浸渍方法制备催化剂。以载体中含10ω%Al2O3、 10ω%Al2O3-SiO2和10ω%Al2O3-ZrO2的无机多孔材料与含30ω%ZSM-22和 40ω%NU-87分子筛机械混捏制成载体,分子筛机械混捏制成载体,载体吸水 率为0.65ml/g。

称200g载体,喷浸30ml含PtCl2和PdCl2浓度为0.3ω%浸渍溶液,在 喷浸过程中,将100ml含1.7ω%的PtCl2和PdCl2的稀盐酸浸渍溶液匀速滴加 到上述浸渍液中,30分钟滴加完毕。催化剂在喷浸设备中均化1小时,在100 ℃干燥6小时,在550℃焙烧6小时,制得催化剂A-4,其中制备的催化剂 A-4中含Pt和Pd质量分数为0.6%(催化剂质量计)。

实施例5

实施例4区别在于喷浸过程中浸渍液浓度不同,先喷浸40ml含PtCl2和PdCl2浓度为1.0ω%浸渍溶液,在喷浸过程中,将90ml含3.0ω%的PtCl2和PdCl2的稀盐酸浸渍溶液匀速滴加到上述浸渍液中,其余步骤相同,制得 催化剂A-5,其中制备的催化剂A-5中含Pt和Pd质量分数为1.0%(催化剂 质量计)。

实施例6

与实施例5的区别在于,先喷浸20ml含PtCl2和PdCl2浓度为1.5ω% 浸渍溶液,在喷浸过程中,将110ml含5.0ω%的PtCl2和PdCl2的稀盐酸浸渍 溶液匀速滴加到上述浸渍液中,其余步骤相同,制得催化剂A-6,其中制备 的催化剂A-6中含Pt和Pd质量分数为2.0%(催化剂质量计)。

对比例1

与实施例2不同在于称取200gAl2O3无机材料机械混捏制成载体,载体 吸水率为0.80ml/g,然后向载体一次性喷浸160ml含PtCl2和PdCl2浓度为 1.1ω%浸渍溶液,其余步骤相同,制得催化剂B-1,其中制备的催化剂B-1 中含Pt和Pd质量分数为0.6%(催化剂质量计)。

对比例2

与实施例2不同在于称200g载体,一次性喷浸140ml含PtCl2和PdCl2 浓度为0.4ω%浸渍溶液,在喷浸过程中,其余步骤相同,制得催化剂B-2, 其中制备的催化剂B-2中含Pt和Pd质量分数为0.2%(催化剂质量计)。

对比例3

与实施例4不同在于,将130ml含PtCl2和PdCl2浓度为1.4ω%浸渍溶 液一次性喷浸于200g载体上,其余步骤相同,制得催化剂B-2,其中制备的 催化剂B-2中含Pt和Pd质量分数为0.6%(催化剂质量计)。

实施例7

采用ICP和EDS表征手段对A-1、A-2、A-3、A-4、A-5、A-6、B-1、B-2 和B-3催化剂中贵金属含量和贵金属相对分布进行了表征。

表1催化剂物性结果

注:中心*为催化剂颗粒横截面的外接圆圆心;R为催化剂颗粒横截面 的外接圆半径,以催化剂颗粒横截面的外接圆圆心为起点;外表*为催化剂颗 粒横截面外接圆表面。

从表1可以看出,虽然在A-1、A-2、A-3、A-4、A-5和A-6催化剂中 含有贵金属活性组分含量较低,但是贵金属在催化剂相对分布都实现从催化 剂颗粒内部到外表面现出梯度递增的趋势,即在颗粒外接圆圆心处与外接圆 表面处金属相对含量比为0.1~0.6,0.5R处与外表面处金属含量之比为 0.4~0.8,而对比例中B-1、B-2和B-3催化剂,从催化剂颗粒内部到外部分 布都比较均匀。

实施例8

以A-2、A-4、B-2和B-3为催化剂为例,进行真实原料加氢评价。

加氢评价反应在100ml加氢固定床上进行,评价原料油为加氢处理后 的减压蜡油,原料性质如表2所示。

表2原料油性质

密度(20℃),g/ml 0.8669 馏程 HK,℃ 404 50%,℃ 513 KK,℃ 557 硫,μg/g 37 氮,μg/g 29 黏度(100℃),mm2/s 11.6 粘度指数 52 芳烃含量,ω% 30.8 凝点,℃ 51 倾点,℃ 27

评价工况条件如表3所示。

表3评价工况条件

温度,℃ 375 压力,MPa 12 液时质量空速,h-10.85 氢油体积比 600

催化剂运转200小时后评价结果于表4所示。

表4评价结果

从表4的评价结果看,本发明方法制备的贵金属组分呈梯度增加分布 的加氢催化剂,其精制性能、芳烃饱和性能、加氢异构性能、降低基础油倾 点性能以及基础油的总收率都好于传统方法制备活性组分均匀分布的加氢催 化剂,在生产优质润滑油基础油领域应用前景广阔。

本发明制备的贵金属催化剂主要用于生产优质润滑油基础油。本发明 方法的优点在于将低浓度含量的贵金属化合物浸渍在催化剂中,实现了在其 呈梯度增加分布,即从催化剂颗粒内部到表面金属含量梯度增加,达到将低 含量贵金属化合物在催化剂实现理想分布,高效地利用了贵金属活性中心, 采用本发明制备的催化剂活性高、稳定性好,尤其本发明制备的催化剂在重 质油加工生产高档润滑油基础油领域具有显著效果,催化剂具有加氢异构性 能优异,芳烃饱和性能强,生产的润滑油基础油粘度指数高、倾点低、基础 油收率高的优点。本发明所制备的贵金属加氢催化剂的贵金属利用率得到提 高,可以有效降低贵金属在催化剂中负载量,使得制备成本大幅降低。在重 质油加工生产高档润滑油基础油领域具有显著效果,应用前景广阔。

本发明的贵金属加氢催化剂及其制备方法,适用于制备芳烃饱和催化 剂、重整加氢催化剂、PAO加氢催化剂、柴油加氢催化剂、加氢异构催化剂, 尤其适用于在重质油加工生产高档润滑油基础油的贵金属加氢催化剂制备, 本发明使用效果显著,应用前景广阔。

当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质 的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明权利要求的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号