首页> 中国专利> 一种基于状态观测器的冷热电三联供系统预测控制方法

一种基于状态观测器的冷热电三联供系统预测控制方法

摘要

本发明公开了一种基于状态观测器的冷热电三联供系统预测控制方法,包括以下的步骤:S1:获取微型燃气轮机冷热电三联供对象的阶跃响应模型;S2:确定联供对象的状态空间模型;S3:设置控制器参数,并对联供系统的未来状态进行预测;S4:对控制器进行初始化;S5:计算偏差;S6:对状态量进行在线修正;S7:对未来输出进行预测;S8:计算下一时刻燃料量、回热阀门开度和高压冷剂蒸汽阀门开度的最佳控制增量;S9:计算下一时刻燃料量、回热阀门开度和高压冷剂蒸汽阀门开度的最佳控制量;S10:输出最佳控制量,根据测量信号计算并更新下一时刻的输出预测值;然后在每个采样周期内,重复执行步骤S5-S10。本发明能够改善控制品质。

著录项

  • 公开/公告号CN105676647A

    专利类型发明专利

  • 公开/公告日2016-06-15

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN201610142068.2

  • 申请日2016-03-11

  • 分类号G05B13/04(20060101);

  • 代理机构南京苏高专利商标事务所(普通合伙);

  • 代理人柏尚春

  • 地址 210096 江苏省南京市四牌楼2号

  • 入库时间 2023-12-18 15:32:47

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-04-24

    授权

    授权

  • 2016-07-13

    实质审查的生效 IPC(主分类):G05B13/04 申请日:20160311

    实质审查的生效

  • 2016-06-15

    公开

    公开

说明书

技术领域

本发明涉及热工自动控制领域,特别是涉及一种基于状态观测器的冷热电三联供 系统预测控制方法。

背景技术

冷热电联供是实现能量梯级利用、提高一次能源利用率的重要规划和措施。以微 型燃气轮机为动力的冷热电联供系统,以其能源利用的高效率、低排放、分布式、安全性和 便于调节等优点,逐渐成为当前世界能源技术的发展趋势之一。

国内外学者针对联供系统的运行优化、建模等方面进行了大量的研究工作,但是 控制策略的研究有所不足。再者,由于联供系统存在较大的惯性和延迟,使得控制策略难以 设计。联供系统还存在阀门等设备的非线性特征和上下游回路的耦合特性,导致传统控制 方法难以取得满意的控制效果。同时,由于扰动、测量噪声、不确定性的存在对控制器有一 定干扰作用,很难取得良好的控制品质。目前通常采用的常规PID控制方案,难以有效应对 被控对象的大延迟、强耦合特性。

发明内容

发明目的:本发明的目的是提供一种能够改善控制品质的基于状态观测器的冷热 电三联供系统预测控制方法。

技术方案:为达到此目的,本发明采用以下技术方案:

本发明所述的基于状态观测器的冷热电三联供系统预测控制方法,包括以下的步 骤:

S1:获取微型燃气轮机冷热电三联供对象的阶跃响应模型;

在稳态工况下,分别以燃料量、回热阀门开度和高压冷剂蒸汽阀门开度为输入进 行开环阶跃响应试验,经平滑滤波后,分别得到三个输出侧的阶跃响应模型的系数为si.j.k, i=1,…,ny,j=1,…,nu,k=1,…,N;其中,ny、nu分别是系统输出和输入个数,N为三个阶 跃响应模型的时域长度;

S2:确定联供对象的状态空间模型,如公式(1)所示:

X(k)=LX(k-1)+SΔu(k-1)+TΔd(k-1)y(k)=CX(k)y^(k)=y(k)+υ(k)---(1)

式(1)中:

X(k)=x1T(k)...xNT(k)xpT(k)xdT(k)TC=Iny0...0S=s1...sNsN-sN-10TT=00...BdT,

y(k)是输出向量,Δu(k)是输入向量增量,X(k)是状态向量,Δd(k)是扰动序列,υ (k)是测量噪声,是输出测量值,xi,i=1,…N是系统状态量,xP和xd是分别表征动态残 留特性和扰动特性的状态,sk是阶跃响应矩阵,如式(2)所示;

矩阵L、T中的参数矩阵为:Ad=diag{β1,…,βN},0≤βi<1,Bd=Iny,Cd=Iny, 输出侧稳定时ai取0,不稳定时ai取1;

S3:设置控制器参数,并对联供系统的未来状态进行预测;

首先,设置控制器参数,包括采样时间Ts,预测时域P,控制时域M,输出误差权矩阵 Q,控制权矩阵R;

然后,采用公式(3)所示的预测模型对联供系统的未来状态进行预测:

X~(k|k-1)=LX~(k-1|k-1)+SΔuM(k-1)---(3)

式(3)中,表示在k-1时刻对k+i时刻的输出预测值,表示模型输出估 计值,xp(k|k-1)T表示在k-1时刻对k时刻的动态残留特性状态的预测值,xd(k|k-1)T表示在 k-1时刻对k时刻的扰动特性状态的预测值,ΔuM(k)=[Δu(k)…Δu(k+M-1)]T,其中Δu(k+ i),i=0,…,M-1表示k+i时刻的输入向量增量,M为控制时域;

S4:对控制器进行初始化;

S5:计算偏差,如式(4)所示:

e(k)=y^(k)-y~(k|k-1)---(4)

式(4)中,e(k)为偏差,为输出测量值;

S6:对状态量进行在线修正,如式(5)所示:

X~(k|k)=X~(k|k-1)+Ke(k)---(5)

式(5)中,K为最佳滤波增益,采用式(6)进行计算:

式(6)中,(fa)i由信噪比dii确定;

S7:采用式(7)所示的预测模型对未来输出进行预测;

y~(k+1|k)=LPX~(k|k)+SPMΔuM(k)---(7)

式(7)中,P为预测时域;

S8:计算下一时刻燃料量、回热阀门开度和高压冷剂蒸汽阀门开度的最佳控制增 量Δu(k);

性能指标函数如式(8)所示:

minJ=||Q[y~(k+1|k)-W(k+1)]||2+||RΔuM(k)||2---(8)

式(8)中,W(k+1)=[w(k+1)…w(k+P)]T为未来输出值的参考目标向量,Q为输出误 差权矩阵,R为控制权矩阵;

将式(7)的预测输出带入式(8)中,并且通过求取性能指标函数的极值 求得最佳控制增量为:

Δu(k)=Kmpc[W(k+1)-y~(k+1|k)]---(9)

式(9)中,

S9:计算下一时刻燃料量、回热阀门开度和高压冷剂蒸汽阀门开度的最佳控制量u (k),如式(10)所示:

u(k)=u(k-1)+Δu(k)(10)

S10:输出最佳控制量u(k),根据测量信号计算并更新下一时刻的输出预测值 然后在每个采样周期内,重复执行步骤S5—S10。

进一步,所述步骤S3中的Ts按照式(11)来选取:

T95/Ts=5~15(11)

式(11)中,T95为过渡过程上升到95%的调节时间。

进一步,所述步骤S3中的M的取值范围为3~5。

进一步,所述步骤S3中的Q和R分别如式(12)所示:

Q=IP×P(12)

R=IM×M(13)。

有益效果:与现有技术相比,本发明具有以下优点:通过采用多变量预测控制方 法,能够更好地实现输出侧的协调,有效处理系统间的耦合特性,提高动态调节品质;同时 通过引入状态观测器,能够有效抑制外界扰动及测量噪声造成的影响,从而保证联供系统 的控制品质。

附图说明

图1为本发明冷热电联供系统控制系统框图;

图2为本发明与传统PID控制器在参考值阶跃变化时出口热水温度、出口冷水温度 和燃气轮机转速的对比图;

图3为本发明与传统PID控制器在参考值阶跃变化时高压冷剂蒸汽阀门开度、回热 阀门开度和燃料量的对比图;

图4为本发明与传统PID控制器在输出侧阶跃扰动时出口热水温度、出口冷水温度 和燃气轮机转速的对比图;

图5为本发明与传统PID控制器在输出侧阶跃扰动时高压冷剂蒸汽阀门开度、回热 阀门开度和燃料量的对比图。

具体实施方式

下面结合具体实施方式对本发明的技术方案作进一步的介绍。

本发明公开了一种基于状态观测器的冷热电三联供系统预测控制方法,系统框图 如图1所示,本发明方法包括以下的步骤:

S1:获取微型燃气轮机冷热电三联供对象的阶跃响应模型。冷热电联供系统动态 特性可用公式(1)所示的传递函数模型描述:

y1(s)y2(s)y3(s)=G11(s)G12(s)G13(s)G21(s)G22(s)G23(s)G31(s)G32(s)G33(s)u1(s)u2(s)u3(s)---(1)

式(1)中,u1、u2、u3分别表示燃料量(kg/s)、回热阀门开度和高压冷剂蒸汽阀门开 度;y1、y2、y3分别表示燃气轮机转速(rad/min)、出口冷水温度(℃)和出口热水温度(℃)。各 传递函数分别为:

G11(s)=0.031s+0.0157s2+0.364s+0.0217,G12(s)=0.0084s2+0.364s+0.0217,G13(s)=0,

G21(s)=12.66s2-9.447s-1.089105×s3+20680s2+1565s+6.102,G22(s)=-0.710s2+1.332s+0.02224733s3+217.7s2+247.9s+1,

G23(s)=-0.08674s-0.0008834s+0.003969,G31(s)=-241.3s2+167s+1.758106×s3+107500s3+19010s2+7.67,

G32(s)=0.073s2-2.179s-0.0286540s3+253.1s2+166.8s+1,G33(s)=-0.01747s-0.009033S2+0.08525s+0.0003225.

用燃气轮机转速y1表示发电量,且G13(s)=0表示高压冷剂蒸汽阀门开度对燃气轮 机转速无影响。

设模型时域N=100。通过阶跃响应实验,分别获得冷热电联供系统阶跃响应系数 分别为:

[s1,1,1,…,s1,1,100]=[0,0.3367,0.5385,0.6361,0.6822,0.7047,…,0.7235, 0.7235],

[s1,2,1,…,s1,2,100]=[0,0.1478,0.2711,0.3322,0.3612,0.3749,…,0.3871, 0.3871],

[s1,3,1,…,s1,3,100]=[0,0,0,0,0,0,…,0,0],

[s2,1,1,…,s2,1,100]=[0,-0.0030,-0.0100,-0.0172,-0.0239,…,-0.1756,- 0.1757],

[s2,2,1,…,s2,2,100]=[0,0.0037,0.0059,0.0069,0.0076,0.0082,…,0.0220, 0.0220],

[s2,3,1,…,s2,3,100]=[-0.0868,-0.0920,-0.0971,-0.1020,-0.1067,…,- 0.2198,-0.2199],

[s3,1,1,…,s3,1,100]=[0,0.0047,0.0169,0.0315,0.0460,0.0597,…,0.2326, 0.2327],

[s3,2,1,…,s3,2,100]=[0,-0.0058,-0.0108,-0.0138,-0.0155,…,-0.0291,- 0.0291],

[s3,3,1,…,s3,3,100]=[0,-0.1204,-0.1752,-0.2009,-0.2135,…,-0.2787,- 0.2787];

S2:获取冷热电联供系统状态空间模型。系统状态空间模型如式(8)所示:

X(k)=LX(k-1)+SΔuM(k-1)+TΔd(k-1)y(k)=CX(k)y^(k)=y(k)+υ(k)---(8)

将Ad=0.5I3×3,Bd=I3×3,Cd=I3×3,AP=03×3代入式(8)中,可得:

T=0...0I3×3,C=I3×30...0T,

S=000...0.72550.3871000001×300-0.0868...-0.17570.0220-0.2199-0.00010-0.000101×3000...0.2327-0.0291-0.27870.00010001×3T;

S3:设置控制器相关参数。令采样时间Ts=10s,预测时域P=20,控制时域M=5,输 出误差权矩阵Q=IP×P,控制权矩阵R=IM×M

S4:初始化控制器的状态。在某个稳态工况下,检测当前时刻的输出测量值y(k), 并将其作为未来100步的初始预测值;

S5:计算偏差,如式(9)所示:

e(k)=y^(k)-y~(k|k-1)---(9)

式(9)中,e(k)为偏差,为输出测量值;

S6:对预测模型的状态量进行修正:取最佳滤波增益

K=0.40.55...0.554300.40.55...0.6400.40.55...0.55430T;

S7:采用式(10)所示的预测模型对未来输出进行预测;

y~(k+1|k)=y~1...y~20T---(10)

S8:计算下一时刻燃料量、回热阀门开度和高压冷剂蒸汽阀门开度的最佳控制增 量,即其中,W(k+1)=[68000,7,80,…,68000,7,80]T

Kmpc=Iny0...×{(SPM)TQTQSPM+RTR}-1(SPM)TQTQ=0-0.002900.3977-0.01210.0057...-0.000177-0.0178-0.00069900.0003170-0.00370.0004550.0015...0.0007090.0384-0.012700.02930-0.00150.06570.0411...-0.0012-0.02090.023

S9:计算下一时刻燃料量、回热阀门开度和高压冷剂蒸汽阀门开度的最佳控制量u (k)=u(k-1)+Δu(k);

S10:输出最佳控制量u(k),根据测量信号计算并更新下一时刻的输出预测值 其后在每个采样周期内,重复执行步骤S5—S10。

本发明基于状态观测器的冷热电联供系统预测控制效果与PID控制效果的对比如 图2、图3所示。在初始稳态工况为u1=0.0085kg/s、u2=0.3、u3=0.2、y1=68000rad/min、y2=7℃、y3=80℃时,假定输出目标值分别变化-6800rad/min、0.7℃、-8℃,实线部分表示基 于状态观测器的预测控制器控制效果,虚线表示传统PID控制器控制效果。可以看出,由于 联供系统大延迟、强耦合的特点,传统PID控制器控制效果不佳。而本发明能在较短的时间 内稳定输出量,保证控制品质,波动小,响应速度快;同时,燃料量及阀门的变化更小,能有 效减小运行费用并降低阀门损耗。

本发明基于状态观测器的冷热电联供预测控制与PID控制抗扰动能力的对比如图 4、图5所示。在初始稳态工况为u1=0.0085kg/s、u2=0.3、u3=0.2、y1=68000rad/min、y2=7 ℃、y3=80℃时,假定输出侧分别有数值为6800rad/min、0.7℃、8℃的阶跃扰动,实线部分 表示基于状态观测器的预测控制器控制效果,虚线表示传统PID控制器控制效果。可以看 出,由于传统PID控制器的强鲁棒性,其抗扰动能力与基于状态空间的预测控制器类似,但 是传统PID控制器通过牺牲控制量来抑制阶跃扰动,导致控制量波动较大。与之相比,基于 状态观测器的预测控制器能减小燃料量和阀门开度的变化,并减小因阀门开度不断变化造 成的磨损,延长阀门使用寿命。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号