首页> 中国专利> 方位角选择性井下核磁共振(NMR)工具

方位角选择性井下核磁共振(NMR)工具

摘要

在一些方面,一种井下核磁共振(NMR)工具包括磁体组件和天线组件。所述NMR工具能在地下区域的井眼中操作来从所述地下区域获得NMR数据。所述磁体组件在所述井眼周围的体积中产生磁场。所述天线组件在所述体积中产生激励,并基于所述激励获取来自所述体积的方位角选择性响应。所述天线组件可包括横向偶极天线和单极天线。

著录项

  • 公开/公告号CN105473813A

    专利类型发明专利

  • 公开/公告日2016-04-06

    原文格式PDF

  • 申请/专利权人 哈利伯顿能源服务公司;

    申请/专利号CN201480041305.5

  • 发明设计人 A·里德曼;陈松华;

    申请日2014-08-08

  • 分类号E21B47/00(20120101);G01V3/18(20060101);G01V3/38(20060101);

  • 代理机构隆天知识产权代理有限公司;

  • 代理人金鹏

  • 地址 美国得克萨斯州

  • 入库时间 2023-12-18 15:16:23

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-04-05

    授权

    授权

  • 2016-05-04

    实质审查的生效 IPC(主分类):E21B47/00 申请日:20140808

    实质审查的生效

  • 2016-04-06

    公开

    公开

说明书

相关申请的交叉引用

本申请要求2013年8月30日提交的标题为“ObtainingNuclear MagneticResonance(NMR)DatafromaSubterraneanRegion.”的美国 临时专利申请号61/872,362的优先权,所述优先权申请特此以引用的 方式并入本申请中。

发明背景

本申请涉及方位角选择性的井下核磁共振(NMR)工具,其例如用 于从地下区域获得NMR数据。

在测井的领域中(例如,电缆测井、随钻测井(LWD)和随钻测量 (MWD)),核磁共振(NMR)工具已经用来基于与地下物质的磁性相互 作用探测地下。一些井下NMR工具包括产生静磁场的磁体组件和生 成射频(RF)控制信号并检测地下物质中的磁共振现象的线圈组件。可 从所检测到的现象识别地下物质的性质。

附图描述

图1A为示例性井系统的图。

图1B为包括电缆测井环境中的NMR工具的示例性井系统的图。

图1C为包括随钻测井(LWD)环境中的NMR工具的示例性井系 统的图。

图2A为用于从地下区域获得NMR数据的示例性井下工具的图。

图2B为用于从地下区域获得NMR数据的另一个示例性井下工 具的图。

图3A为示出示例性井下工具的方位角选择性的座标图。

图3B为用于从地下区域获得NMR数据的另一个示例性井下工 具的图。

图4A为示出用于从地下区域获得NMR数据的示例性技术的流 程图。

图4B为示出用于从地下区域获得NMR数据的另一种示例性技 术的流程图。

在各图中,类似的参考符号指示类似的元件。

具体实施方式

在一些实现方式中,NMR仪器可提供用于从地下获得NMR数 据的实际解决方案。在一些实例中,所述仪器可提供(例如,用于给 定的DC功率预算)更高的信噪比(SNR)、动态抗扰性、测量的方位角 选择性或这些或其他优点的组合。在一些情况下,所述仪器可对环境 因素具有鲁棒性,并为地下分析提供准确或精确的信息。

用于井下NMR仪器的一些示例性配置包括用于磁体组件和天线 组件的基本上二维(2D)的横向偶极布置。由磁体和天线生成的磁场可 具有适合在轴向运动期间使用的轴向均匀性(即,沿NMR仪器的长轴 的均匀性)。在一些情况下,例如,可使用更宽的频带激励(核磁的饱 和)来实现与这类型仪器的轴对称(圆度)。在一些实现方式中,一种井 下NMR工具被配置来生成轴对称磁场,其中磁体组件生成径向磁场 并且天线组件生成纵向RF磁场(还具有纵向灵敏度方向)。

在一些实例中,NMR仪器可在所感兴趣的体积中产生纵向静磁 场。在一些实例中,所述仪器包括多个横向偶极天线(例如,两个相 同的横向偶极天线),所述横向偶极天线产生圆偏振激励并提供正交 线圈检测。例如,多个正交天线的布置可与在所感兴趣的体积中生成 轴向静磁场的纵向偶极磁体一起使用。在一些实例中,所述仪器包括 利用磁体组件的不同区域来获取NMR信号的多体积布置。在一些实 例中,勘测区具有适合于在装卸钻柱(即,在井眼中转接钻柱)时测量 的形状。一些示例性实现方式包括横向偶极天线轴对称响应和单极天 线轴对称响应的组合,所述组合可在一些实例中实现方位角分辨的单 方向NMR测量。

图1A为示例性井系统100a的图。示例性井系统100a包括NMR 测井系统108和在地面106下方的地下区域120。井系统可包括在图 1A中未示出的另外的或不同的特征件。例如,井系统100a可包括另 外的钻井系统部件、电缆测井系统部件等。

地下区域120可包括一个或多个地下地层或区中的全部或部分。 在图1A中示出的示例性地下区域120包括多个地下层122和穿透地 下层122的井眼104。地下层122可包括沉积层、岩石层、沙层或这 些及其他类型的地下层的组合。地下层中的一个或多个可包含流体, 如盐水、石油、气体等。虽然在图1A中示出的示例性井眼104为垂 直井眼,但NMR测井系统108可在其他井眼取向上加以实现。例如, NMR测井系统108可适于水平井眼、倾斜井眼、弧形井眼、垂直井 眼或这些的组合。

示例性NMR测井系统108包括测井工具102、地面设备112和 计算子系统110。在图1A中所示的实例中,测井工具102是在设置 在井眼104中时进行操作的井下测井工具。在图1A中所示的示例性 地面设备112在地面106处或在地面106上方(例如,靠近井口105) 进行操作,以便控制测井工具102以及可能其他井下设备或井系统 100的其他部件。示例性计算子系统110可接收并分析来自测井工具 102的测井数据。NMR测井系统可包括另外的或不同的特征件,并 且NMR测井系统的特征件可如图1A所示的或以另一种方式进行布 置和操作。

在一些实例中,计算子系统110的全部或部分可实现为地面设备 112、测井工具102或两者中的一个部件,或者可与地面设备112、 测井工具102或两者的一个或多个部件集成为一体。在一些情况下, 计算子系统110可实现为与地面设备112和测井工具102分开的一个 或多个计算结构。

在一些实现方式中,计算子系统110嵌入在测井工具102中,并 且计算子系统110和测井工具102可在设置在井眼104中时可同时进 行操作。例如,尽管在图1A中所示的实例中在地面106的上方示出 了计算子系统110,但计算子系统110的全部或部分可驻留于地面106 的下方,例如,在测井工具102的位置处或靠近测井工具102的位置。

井系统100a可包括允许在计算子系统110、测井工具102和NMR 测井系统108的其他部件之间进行通信的通信或遥测设备。例如, NMR测井系统108的部件可各自包括用于在各种部件之间有线或无 线数据通信的一个或多个收发器或类似装置。例如,NMR测井系统 108可包括用于光学遥测、电缆遥测、有线钻杆遥测、泥浆脉冲遥测、 声学遥测、电测遥测或这些及其他类型遥测的组合的系统和装置。在 一些情况下,测井工具102从计算子系统110或另一种源接收命令、 状态信号或其他类型的信息。在一些情况下,计算子系统110从测井 工具102或另一种源接收测井数据、状态信号或其他类型的信息。

NMR测井操作可结合各种类型的井下操作在井系统寿命的各阶 段处执行。地面设备112和测井工具102的结构属性和部件可适于各 种类型的NMR测井操作。例如,可在钻井操作期间、在电缆测井操 作期间或在其他环境中执行NMR测井。这样,地面设备112和测井 工具102可包括钻井设备、电缆测井设备或用于其他类型的操作的其 他设备或可结合钻井设备、电缆测井设备或用于其他类型的操作的其 他设备进行操作。

在一些实现方式中,测井工具102包括磁体组件,所述磁体组件 包括中心磁体和两个端件磁体。在图2A、图2B和图3B中示出了实 例。端件磁体可与中心磁体的轴端隔开。端件磁体连同中心磁体一起 可限定四个磁极,所述四个磁极可被布置来增强所感兴趣的体积中的 静磁场。在一些情况下,中心磁体限定第一磁场取向,并且端件磁体 限定与所述第一磁场取向正交的第二磁场取向。测井工具102还可包 括多个正交的横向偶极天线。所述正交的横向偶极天线可在地下体积 中产生圆偏振激励并通过正交线圈检测来从所述体积获取响应。

在一些实现方式中,测井工具102包括在地下区域120中的多个 不同的子体积中产生磁场的磁体组件。在图2B中示出实例。第一子 体积可以是在纵向方向(平行于井眼轴)上延伸的伸长的圆柱形壳体 区域,并且第一子体积中的磁场可沿纵向方向基本均匀地取向。第二 子体积和第三子体积可与第一子体积的轴端隔开,并且第二子体积和 第三子体积中的静磁场可具有径向取向(垂直于纵向方向)。第二子体 积和第三子体积可位于距工具管柱的中心与第一体积不同的距离。在 一些实例中,第二子体积和第三子体积的位置允许测井工具收集信息 以用于泥浆滤液侵入剖析。测井工具102还可包括在沿纵轴的对应位 置处的多个天线组件。天线组件中的每一个可检测来自不同子体积中 相应的一个的NMR响应。

在一些实现方式中,测井工具102包括磁体组件以及横向偶极和 单极天线组件。在图3B中示出实例。横向偶极和单极天线组件可从 磁体组件周围的地下体积获得单方向的方位角选择性的NMR响应。 横向偶极和单极天线组件可包括正交的横向偶极天线和单极天线。

在一些实例中,在电缆测井操作期间执行NMR测井操作。图1B 示出包括电缆测井环境中的测井工具102的示例性井系统100b。在 一些示例性电缆测井操作中,地面设备112包括在地面106上方的平 台,所述平台配备有支撑延伸到井眼104中的电缆缆线134的井架 132。例如,可在将钻柱从井眼104移除之后执行电缆测井操作,以 允许通过电缆或测井缆线将电缆测井工具102下降到井眼104中。

在一些实例中,在钻井操作期间执行NMR测井操作。图1C示 出包括随钻测井(LWD)环境中的测井工具102的示例性井系统100c。 通常使用连接在一起以便形成钻柱140的一连串钻杆来执行钻井,所 述钻柱140下降穿过转盘而到井眼104中。在一些情况下,在钻柱 140操作来钻探穿透地下区域120的井眼时,在地面106处的钻机142 支撑钻柱140。钻柱140可包括,例如,方钻杆、钻杆、井底组件以 及其他部件。钻柱上的井底组件可包括钻铤、钻头、测井工具102以 及其他部件。测井工具可包括随钻测量(MWD)工具、LWD工具以及 其他。

在一些实现方式中,测井工具102包括用于从地下区域120获得 NMR测量的NMR工具。例如,如图1B所示,测井工具102可通过 连续管、电缆缆线或将工具连接到地面控制单元或地面设备112的其 他部件的另一种结构悬挂在井眼104中。在一些示例性实现方式中, 测井工具102下降到感兴趣的区域的底部,并且随后被向上拉动(例 如以基本恒定的速度)穿过所感兴趣的区域。例如,如图1C中所示, 测井工具102可部署在井眼104中在接合的钻杆、硬接线钻杆或其他 部署硬件上。在一些示例性实现方式中,测井工具102随着其向下移 动穿过所感兴趣的区域在钻井操作期间收集数据。在一些示例性实现 方式中,测井工具102在钻柱140移动(例如,在其被装入井眼104 中或从井眼104中取出时)期间收集数据。

在一些实现方式中,测井工具102在井眼104中的离散测井点处 收集数据。例如,测井工具102可在井眼104中以递增的方式向上或 向下移动到一系列深度处的每个测井点处。在每个测井点处,测井工 具102中的仪器对地下区域120执行测量。可将测量数据传送至计算 子系统110以供存储、处理和分析。可在钻井操作期间(例如,在随 钻测井(LWD)操作期间)、在电缆测井操作期间或在其他类型的活动 期间搜集和分析此类数据。

计算子系统110可接收和分析来自测井工具102的测量数据以便 检测各个地下层122的性质。例如,计算子系统110可基于由井眼 104中的测井工具102获取的NMR测量来识别地下层122的密度、 黏度、孔隙度、材料内容或其他性质。

在一些实现方式中,测井工具102通过使核自旋在地下区域120 中偏振并用射频(RF)磁场来脉冲化原子核来获得NMR信号。各种脉 冲序列(即,射频脉冲、延迟及其他操作的序列)可用来获得NMR信 号,所述各种脉冲序列包括CarrPurcellMeiboomGill(CPMG)序列(其 中首先使用尖脉冲然后使用一系列重调焦脉冲来使自旋尖端化)、优 化的重调焦脉冲序列(ORPS)(其中所述重调焦脉冲小于180°)、饱和恢 复脉冲序列以及其他脉冲序列。

所获取的自旋回波信号(或其他NMR数据)可被处理(例如,倒置、 变换等)成弛豫时间分布(例如,横向弛豫时间的分布T2或纵向的弛豫 时间的分布T1)或两者。所述弛豫时间分布可用来通过解决一个或多个 逆问题来确定地层的各种物理特性。在一些情况下,弛豫时间分布针 对多个测井点被获取,并用来训练地下区域的模型。在一些情况下, 弛豫时间分布被针对多个测井点被获取,并用来预测地下区域的特 性。

图2A为示例性NMR工具200A的图。所述示例性NMR工具 200A包括:磁体组件,其生成静磁场以产生偏振;和天线组件,其 (a)生成射频(RF)磁场来生成激励,并且(b)获取NMR信号。在图2A 中示出的实例中,包括端件磁体11A、11B和中心磁体12的磁体组 件在勘测体积17中生成静磁场。在勘测体积17中,静磁场的方向(示 为实线黑色箭头18)平行于井眼的纵轴。在一些实例中,具有两极强 度的磁体配置可用来增加磁场的强度(例如,在一些实例中达100-150 高斯或更高)。

在图2A中示出的实例中,天线组件13包括两个相互正交的横 向偶极天线15、16。在一些实例中,可利用单个横向偶极天线来实 现NMR工具200A。例如,可从天线组件13省去横向偶极天线15、 16中的一个。在图2A中示出的示例性横向偶极天线15、16放置在 软磁芯14的外部表面上,所述软磁芯14用于RF磁通量集中。静磁 场可为轴对称(或基本轴对称),并因此可能不需要与另外的能量损耗 相关联的更宽的频带激励。可将勘测体积制作得轴向足够长且足够厚 (例如,在一些环境中为20cm长和0.5cm厚)来提供抗扰性或以其他 方式降低对轴向运动、横向运动或两者的灵敏度。更长的灵敏度区域 可实现装卸钻柱时的测量。可通过使磁体11A、11B、12和磁芯14 的软磁性材料成形来使灵敏度区域成形。

在一些实现方式中,天线组件13另外地或替代地包括执行两个 横向偶极天线15、16的操作的集成线圈组。例如,所述集成线圈(例 如,而不是两个横向偶极天线15、16)可用来产生圆偏振并执行正交 线圈检测。可适于执行此类操作的集成线圈组的实例包括通常用于高 场磁共振成像(MRI)的多线圈布置或复杂的单个-线圈布置(例如像鸟 笼型线圈)。

与一些示例性轴对称设计相比,由于比用于一些纵向偶极天线具 有更长的涡电流,使用纵向偶极磁体和横向偶极天线组件还具有在井 眼中地层和钻井液(即,“泥浆”)中更小的涡电流损耗的优势。

在一些方面,在多个子体积上的NMR测量可增加数据密度并从 而增加每单位时间的SNR。可例如通过在第二频率上获取NMR数据 同时在第一频率上等待原子核磁化恢复(例如,在CPMG脉冲链之后) 来在具有径向梯度的静磁场中进行多次体积测量。许多不同的频率可 用来进行多频率NMR获取,涉及具有不同勘测深度的多个激励体积。 除了更高的SNR之外,多频率测量还可实现在井眼中剖析流体侵入, 从而实现对地层的渗透性的更好评估。进行多体积测量的另一种方法 是使用磁体组件的不同区域来获取NMR信号。可在同一时间(例如, 同时)或不同时间来进行这些不同区域的NMR测量。

图2B为另一个示例性NMR工具200B的图。所述示例性NMR 工具200B也包括:磁体组件,其生成静磁场以产生偏振;和天线组 件,其(a)生成射频(RF)磁场来生成激励,并且(b)获取NMR信号。在 图2B中示出的实例中,磁体组件在勘测体积21中产生具有主导轴 向分量的磁场。在22处示出了RF磁场(如图2A中由两个横向偶极 天线产生)和在这个区域中的静磁场的方向。在图2B中示出的实例 中,在靠近磁极处(超过中心磁体的轴端)产生两个不同的勘测体积 24A、24B,其中静磁场具有主导径向分量。在23A和23B处所示的 示例性NMR天线可在勘测体积24A和24B中靠近纵向偶极天线处 生成RF磁场。在25A和25B处示出了RF磁场在勘测体积24A和 24B中的纵向方向和静磁场在勘测体积24A和24B中的径向方向。

在一些方面中,横向偶极天线和单极天线的组合可用来实现单方 向的方位角选择性的测量,而在一些情况下基本上不减小SNR。在 一些实例中,NMR激励可基本上是轴对称的(例如,使用横向偶极天 线或单极天线),而轴对称灵敏度的横向偶极天线响应和轴对称灵敏 度的单极天线响应的组合可实现方位角分辨测量。

图3A和图3B示出示例性方位角选择性的NMR工具的方面。 图3A为示出来自在图3B中所示的示例性井下工具300B的方位角所 选择数据的实例的座标图300A。所述示例性NMR工具300B包括: 磁体组件,其生成静磁场以产生偏振;和天线组件,其(a)生成射频(RF) 磁场来生成激励,并且(b)获取NMR信号。在图3B中示出的天线组 件31包括单极天线和两个正交的横向偶极天线35和36。示例性单 极天线包括两个线圈37A和37B,所述两个线圈37A和37B在相反 极性上连接以便在勘测体积34中生成基本径向的RF磁场。由于互 易性,相同的线圈布置可具有径向的灵敏度方向。在32和33处呈现 的示例性RF磁场BRF可反映当单极天线响应与横向偶极天线响应中 的一个组合时的总灵敏度方向。

在图3B中所示的示例性单极天线包括局部生成基本径向方向的 磁场(即,将由单个“磁荷”或磁极产生的场)的线圈的布置。在本文中, 我们使用术语“单极”来将这类型的磁场与偶极磁场(横向的或纵向的) 加以区分。在一些情况下,单极天线组件生成准静(相对低频率)磁场。 在示出的实例中,在相反极性上连接的线圈37A和37B为一个单极 天线组件的两部分。每个线圈自身可实现为标准纵向天线。可以另一 种方式实现单极天线。

在图3A中的极座标图示出天线灵敏度的实例,表明单方向的方 位角选择性。正交的横向偶极天线中的每一个的响应与单极天线的响 应的组合可给定覆盖横向平面的所有象限的四个可能方向中的任意 一个。钻柱在钻井时的旋转可引起方位角选择响应的幅度调制并从而 引起NMR弛豫信号(例如,CPMG回波链)的幅度调制。幅度调制参 数可指示NMR特性的方位角变化(例如,NMR孔隙度变化)。

例如,在图3B中所示的示例性单极天线的线圈37A和37B可结 合横向偶极天线35和36使用来实现方位角选择性。例如,线圈37A 和37B中的任意一个可用作单独的天线(除了或没有横向偶极天线 35、36)来取得SNR。在一些情况下,在没有其他天线的情况下,利 用单极天线和纵向磁体来实现NMR工具。例如,在一些情况下,可 从天线组件31省去横向偶极天线35和36。

图4A为示出用于从地下区域获得NMR数据的示例性过程400 的流程图;并且图4B为示出用于从地下区域获得NMR数据的另一 个示例性过程420的流程图。过程400和420中的每一个可独立于另 一个而执行,或者过程400和420可同时地或一致地执行。例如,过 程400和420可串行或平行执行,或者所述过程中的一个可在不执行 另一个的情况下加以执行。

过程400和420可由如在图2A、图2B和图3B中所示的示例性 NMR工具200A、200B或300B的井下NMR工具或由另一种类型的 NMR工具执行。在井系统操作期间,在工具设置在井眼内时,过程 400和420可由井下NMR工具执行。例如,井下NMR工具可悬挂 在井眼中以用于电缆测井(例如,如图1B中所示),或井下NMR工具 可耦接到钻柱以用于NMRLWD(例如,如图1C中所示)。

过程400和420中的每一个可包括(分别)在图4A和4B中所示的 操作,或所述过程中的任意一个可包括另外的或不同的操作。所述操 作可按在相应的图中所示的顺序或按另一顺序执行。在一些情况下, 在重叠或非重叠时间段期间,操作中的一个或多个可串行或平行地执 行。在一些情况下,例如,操作中的一个或多个可迭代或重复进行特 定数目的迭代特定的持续时间,或直到达到终止的条件。

在图4A中所示的示例性过程400中的402,将NMR工具定位 在井眼中。在一些情况下,NMR工具包括在井眼周围的地下区域的 体积中产生磁场的磁体组件。所述体积可包括例如在图2A、图2B 或图3B中所示的勘测体积17、21、24A、24B、34中的任一个的全 部或部分或另一个所感兴趣的体积。通常,NMR工具包括:磁体组 件,其用以使核自旋在所感兴趣的体积中偏振;和天线组件,其用以 激励核自旋并基于所述激励来获取NMR信号。

在404,在井眼周围的体积中产生偏振。所述偏振由静磁场生成, 所述静磁场在井眼中由NMR工具的磁体组件产生。所述偏振指核自 旋在体积中的磁偏振。换句话说,核自旋的一部分变得与静磁场对齐, 并且所述体积产生块体磁矩。在一些情况下,静磁场被配置来(例如, 由磁体组件的形状和位置)产生纵向偏振(例如,平行于井眼的长轴) 或具有另一取向的偏振。

在一些实例中,磁体组件包括中心磁体(例如,在图2A、图2B、 图3B中所示的中心磁体12或另一类型的中心磁体)和两个端件磁体 (例如,在图2A、图2B、图3B中所示的端件磁体11A、11B,或另 一类型的端件磁体)。在一些情况下,在磁体组件中的磁体为永磁体。 例如,如图2A所示,中心磁体可以是具有第一轴端和相反的第二轴 端的伸长的永磁体,其中第一端件磁体与中心磁体的第一轴端间隔 开,并且其中第二端件磁体与中心磁体的第二轴端间隔开。在一些情 况下,两个端件磁体具有公共的磁场取向,并且中心磁体具有相反的 磁场取向,(例如,使得两个端件磁体具有与中心磁体的磁场取向正 交的磁场取向)。

在406,在井眼周围的体积中生成圆偏振激励。在体积中由天线 组件产生所述圆偏振激励。例如,天线组件可由射频电流提供能量, 所述射频电流在井眼周围的体积中产生射频(RF)磁场。由天线组件生 成的RF磁场操纵核自旋来产生具有圆偏振的受激的自旋态。换句话 说,所产生的自旋偏振在井眼周围的体积中具有圆形(或周向)取向。

在一些实例中,天线组件包括正交的横向偶极天线。在图2A和 图2B中所示的天线组件13和在图3B中所示的天线组件31为包括 两个正交的横向偶极天线的天线组件的实例。在示例性天线组件13 中的每个天线15、16例如可通过传导射频电流来独立地产生横向偶 极磁场。在示出的实例中,每个横向偶极磁场相对于NMR工具的纵 轴具有横向取向。换句话说,横向偶极磁场取向成与井眼的长轴正交。

在所示的实例中,由天线15产生的横向偶极磁场与由另一个天 线16产生的横向偶极磁场正交。例如,在三个相互正交方向的笛卡 尔坐标系中,NMR工具的纵轴可视为“z”方向,并且横向偶极磁场(由 天线15、16产生)分别沿“x”方向和“y”方向进行取向。

在一些实现方式中,其他类型的激励由NMR工具产生。例如, 在一些情况下,在第一子体积(例如,在图2B中的勘测体积21)中由 正交的横向偶极天线产生圆偏振激励,并且在第二子体积和第三子体 积(例如,在图2B中的勘测体积24A、24B)中产生具有另一取向的激 励,所述第二子体积和第三子体积与所述第一子体积的轴端间隔开。 例如,可由纵向偶极RF场在第二子体积和第三子体积中产生激励, 所述纵向偶极RF场由其他天线组件(例如,由在图2B中的天线23A 和23B)生成。不同的子体积可用于不同的目的。例如,第一子体积 可为伸长的(平行于井眼的长轴),以便在NMR工具沿井眼移动时(例 如,在装卸钻柱时)从第一子体积获取NMR数据。在一些情况下,可 定位其他子体积来获取NMR数据以用于泥浆滤液侵入剖析或其他应 用。

在408,NMR信号由正交线圈检测获取。NMR信号基于在406 处产生的激励。NMR信号可以是例如回波链、自由感应衰减(FID)或 另一类型的NMR信号。在一些情况下,所获取的NMR数据包括T1 弛豫数据、T2弛豫数据或其他数据。NMR信号可由产生激励的天线 组件或由另一种天线组件获取。在一些情况下,可在多个子体积中获 取NMR信号。

正交线圈检测可由正交的横向偶极天线执行。可通过使用两个正 交线圈、各自拾取由圆偏振原子核磁化诱导的信号(在线圈中的信号 具有90度相位差)来执行正交线圈检测。即使在传输期间仅使用一个 线圈(例如,产生线性偏振的RF磁场),原子核磁化可仍然是圆偏振。 正交线圈传输(由具有90度相位差的RF电流驱动的两个正交线圈) 可实现圆偏振激励,所述圆偏振激励与在一些情况下的线性偏振激励 相比可帮助减小功率损耗。正交线圈检测可例如用来在仅激励一个线 圈(不使用圆偏振激励来简化硬件)时增加信噪比(SNR),或圆偏振可 用来在利用一个线圈检测信号时节省功率。在一些情况下,圆偏振和 正交线圈检测均可用来节省功率并增加SNR。在一些情况下,当相 互正交的天线基本相同时,使用圆偏振或正交线圈检测(或两者)是有 效的。在示例性磁体/天线配置中可能具有纵向偶极磁体和两个横向 天线。虽然允许相互正交的天线,但是在一些情况下,具有两个天线 中的一个比另一个更低效率的其他配置可能不能提供相同的优势。

在410,处理NMR数据。可处理NMR数据来识别地下区域的 物理特性或提取其他类型的信息。例如,可处理NMR数据来识别井 眼周围的地下区域的密度、黏度、孔隙度、材料内容或其他特性。

在图4B中所示的示例性过程420的422,将NMR工具定位在 井眼中,并且在424,在井眼周围的体积中生成偏振。在图4B中的 操作422和424与在图4A中所示的操作402和404类似。例如,NMR 工具包括:磁体组件,其用以使核自旋在所感兴趣的体积中偏振;和 天线组件,其用以激励核自旋并基于所述激励来获取NMR信号。在 424,以参照图4A的操作404所描述的方式并且由相同类型的磁体 组件产生偏振;或在424处,以另一种方式或由另一类型的磁体组件 产生偏振。

在426,在井眼周围的体积中生成激励。在体积中由天线组件产 生激励。例如,天线组件可由射频电流提供能量,所述射频电流在井 眼周围的体积中产生射频(RF)磁场。由天线组件生成的RF磁场操纵 核自旋来产生受激的自旋态。在一些实例中,例如,由于方位角选择 性的RF磁场,自旋态在所选择的方位角方向上具有更高的激励,以 使得自旋激励的等级沿绕井眼的圆形(或周向)方向而变化。

在一些实例中,天线组件包括横向偶极天线组件和单极天线组 件。在图3B中所示的天线组件31为包括横向偶极天线组件和单极 天线组件的天线组件的实例。在图3B中所示的实例中,横向偶极天 线组件和单极天线组件包括在中心区域中的两个正交的横向偶极天 线35和36以及单极天线,所述单极天线包括在横向偶极天线35和 36的第一轴端处的第一线圈37A和在横向偶极天线35和36的相反 的第二轴端处的第二线圈37B;单极天线的线圈37A和37B布置有 相反极性。

在428,获取方位角选择性的NMR信号。NMR信号基于在426 处产生的激励。NMR信号可以是例如回波链、自由感应衰减(FID)或 另一类型的NMR信号。在一些情况下,所获取的NMR数据包括T1 弛豫数据、T2弛豫数据或其他数据。NMR信号可由产生激励的天线 组件或由另一种天线组件获取。在一些情况下,NMR信号由具有方 位角选择性灵敏度的天线组件(如横向偶极天线组件和单极天线组件) 获取。

在一些实现方式中,获取方位角选择性的NMR信号作为多个 NMR信号获取的组合。所述信号获取例如可包括通过一个或多个横 向偶极天线和一个或多个单极天线的获取。可组合所述信号来实现井 眼周围的体积的方位角分辨的测量。例如,在一些情况下,正交的横 向偶极天线中的每一个的响应与单极天线的响应的适当组合可给定 覆盖横向平面的所有象限的四个可能方向中的任意一个。

在430,处理NMR数据。可处理NMR数据来识别地下区域的 物理特性或提取其他类型的信息。例如,可处理NMR数据来识别井 眼周围的地下区域的密度、黏度、孔隙度、材料内容或其他特性。在 一些情况下,处理NMR数据来识别在井眼周围的地下区域中的方位 角变化。例如,旋转NMR工具可引起方位角选择性响应的幅度调制。 所述幅度调制参数可指示影响NMR信号的特性(例如,孔隙度、密度、 黏度、材料内容等)的方位角变化。

尽管本说明书包含许多细节,但这些细节并不应当解释为对可要 求保护的范围的限制,而应当解释为特定于特定实例的特征的描述。 也可将在本说明书中描述于独立实现方式的上下文中的某些特征加 以组合。反之,描述于单个实现方式的上下文中的各种特征也可以单 独地或以任何适合的子组合实现于多个实施方案中。

已描述了多个实例。然而,应理解,可做出各种修改。因此,其 他实现方式也在所附权利要求书的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号