首页> 中国专利> 在延伸过程中用于控制压水核反应堆的方法

在延伸过程中用于控制压水核反应堆的方法

摘要

本发明涉及一种用于控制压水核反应堆的方法,所述反应堆包括:产生热功率的芯;用于获取主冷却剂的平均温度和用于计算热功率的传感器;用于控制主冷却剂的温度的致动器;用于控制功率轴向分布的致动器;该控制方法包括:第一控制阶段,该第一控制阶段用于通过控制主冷却剂的平均温度以使其根据反应堆的热功率对应于一基准温度曲线(Pref)来在正常运行过程中控制反应堆;根据本发明的方法包括被称为延伸的第二控制阶段,所述第二控制阶段在反应堆的正常运行后发生,以通过控制功率的轴向分布来控制延伸过程中的反应堆,该平均温度在由上限和下限所限定的温度范围中自由地变化。

著录项

  • 公开/公告号CN105431909A

    专利类型发明专利

  • 公开/公告日2016-03-23

    原文格式PDF

  • 申请/专利权人 阿利发NP有限公司;

    申请/专利号CN201480038341.6

  • 发明设计人 阿兰·格罗斯泰特;

    申请日2014-07-04

  • 分类号G21D3/00(20060101);G21D3/08(20060101);G21C7/117(20060101);

  • 代理机构11234 中国商标专利事务所有限公司;

  • 代理人宋义兴;周伟明

  • 地址 法国库尔布瓦

  • 入库时间 2023-12-18 14:50:10

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-07-06

    授权

    授权

  • 2016-05-11

    实质审查的生效 IPC(主分类):G21D3/00 申请日:20140704

    实质审查的生效

  • 2016-03-23

    公开

    公开

说明书

技术领域

本发明领域是当反应堆到达寿期末时(在延伸过程中)压水核反应堆的 控制领域。

背景技术

在寿期末当在额定条件下(热功率等于额定功率的100%)时考虑一压 水核反应堆,硼浓度接近零(通常小于10ppm(百万分之一))。

然而,在寿期末,通过降低初始温度补偿由于燃料耗尽而使反应性损失 来改变换料并继续反应堆的动力操作仍然是可行的,通过“减速剂酌”提供 必要的反应性(通过减速剂(水)的温度的变化提供反应性的变化)。该寿 期延长阶段通常被称为“延伸”。

在该“延伸”阶段过程中,由于不可能通过稀释来改变主冷却剂中的硼 浓度而使经由传统的控制方式(控制主冷却剂的平均温度和控制功率的轴向 分布)来控制反应堆是困难的。该控制难度在燃料贫化区考虑到轴向氙振荡 下更不稳定的事实下被放大。这样,在该延伸阶段过程中,控制棒组的移动 将被避免。

在可能持续达两个月的该“延伸”阶段,反应性的下降通过主冷却剂的 温度的下降进行补偿。该温度的下降导致在蒸汽发生器的水平处压力的下 降。这样,反应堆的最大功率将受到在涡轮入口阀(所有的涡轮入口阀均张 开)的蒸汽压力上游处给定的涡轮所能够获得的功率的限制。

而且,在该延伸阶段过程中,反应堆的机动性极大地降低。实际上并不 可能调节由反应堆所产生的功率以符合于电网运营服务(负荷监视)预先建 立的程序,或以然后非常偶然地且在提高的监视下比较于具有小幅度变化的 电能消耗执行功率的产生的实时调节(频率调节)。

在该延伸过程中,对于操作人员来说还有必要执行增加的监视以尽快检 测氙振荡的发生。在氙振荡的情况下,必须降低负荷,以控制反应堆,这使 任何功率的增加困难或甚至不可能。实际上,在负荷下降后,氙增长可以不 再通过稀释操作来补偿,这有必要抽取控制棒组。当控制棒组定位在芯的顶 部(抽取位置)时,不再可能控制功率的轴向分布,反应堆必须停止。

图1图示在“延伸”阶段的过程中不同的温度程序。第一曲线Pref通常 表示基准温度曲线的实例,所述基准温度曲线是用于当压水反应堆在正常运 行时调节压水反应堆的程序的功率的函数。在“延伸”过程中,温度调节程 序的温度曲线定期地(几天的量级)改变几度,通常为2℃至3℃。在正常 运行过程中的基准温度曲线Pref因此在“延伸”阶段过程中被保存并按照时 间分为不同的曲线P1,P2,P3,…Pn01

通过在“延伸”过程中的这种类型的控制,在正常模式中温度的调节因 此使用新的温度曲线来保存(通过潜在地增加死区来限制控制棒组的行为)。

发明内容

根据本发明的控制方法使得可修改主冷却剂的平均温度的调节原理和 在该“延伸”阶段过程中通常使用的功率的轴向分布。

在本文中,本发明目的在于提供一种用于在延伸过程中控制压水核反应 堆的方法,使得可在反应堆的操作的该延伸阶段过程中改进反应堆的机动性 并尤其使得可有利于频率调节的可行性。

为此,本发明的主题是一种用于控制压水核反应堆的方法,所述反应堆 包括:

产生热功率的区;

用于获取主冷却剂的平均温度和热功率的传感器;

用于控制主冷却剂的温度的致动器;以及

用于控制功率轴向分布的致动器;

该控制方法包括用于通过控制主冷却剂的平均温度以使其根据反应堆 的热功率符合基准温度曲线来在正常运行过程中控制反应堆的第一控制阶 段。

该方法特征在于,其包括被称为延伸的第二控制阶段,所述第二控制阶 段在反应堆的正常运行后发生,以通过控制功率的轴向分布来控制延长过程 中的反应堆,该平均温度在由上限和下限所限定的温度范围中自由地变化。

考虑到反应堆在硼浓度等于或小于50ppm以及优选地小于10ppm的时 刻处于延伸过程。

这样,根据本发明的在“延伸”阶段中的控制方法提出了通过控制棒组 的移动作用控制功率的轴向分布以及使冷却剂的平均温度不沿着温度曲线 自由地变化。

尤其是有利于延伸阶段中的该调节原理,因为在该阶段中的主冷却剂的 平均温度在给定高减速剂酌下没有变化很大。

由于根据本发明的控制方法,比较于根据现有技术的控制,极大地有利 于在延伸阶段过程中的反应堆的频率调节,因为平均温度可以自由地变化并 不再必须调节以符合基准温度曲线,如在图1中的例子所图示的那样。

而且,根据本发明的在延伸阶段中的控制方法的调节的特定原理使得可 以最大可能的功率利用反应堆,尤其在负荷下降的实现后,这不是通过根据 现有技术的控制的情况。实际上,在负荷下降(反应堆的功率减少)后,可 以利用温度的下降以补偿氙增长以及使反应堆以其最大功率运行。例子将在 说明书的下文中进行描述。

根据本发明的用于控制压水核反应堆的方法也可以具有以下单独描述 的或根据其任何可能技术的组合的一个或多个特征:

在延伸阶段中,功率的轴向分布的控制通过在该区中的控制棒组的移动 来产生;

在延伸阶段中,轴向分布的控制通过位于该区的一半高度上的一组棒组 的移动来产生,使得该棒的下端部在该区的上部分与一半高度之间移动;

在正常运行阶段过程中,通过修改或不修改主冷却剂的硼浓度,主冷却 剂的平均温度的控制和功率的轴向分布通过在该区中的棒组的移动产生;

在延伸阶段中,功率的轴向分布的控制被自动化;

在延伸阶段中,在死区内在功率的定点轴向分布的周围执行功率的轴向 分布的控制;

温度范围的上限在反应堆的正常运行过程中符合基准温度曲线;

温度范围的下限在变化-Y℃的反应堆的正常运行过程符合基准温度曲 线,Y包括在5与50之间,优选地在5与30之间;

在一变型中,下限符合等于在额定功率的100%处变化-Z℃的基准温度 的固定温度,Z包括在10与50之间,优选地在20与30之间;以及

在延伸阶段中,其中主冷却剂的平均温度可以自由地变化的温度范围由 最大功率限制,所述最大功率根据被称为涡轮限值的主冷却剂的温度供应至 涡轮。

附图说明

参考附图,本发明的其它特征和优点通过其以下给定的描述变得明显, 用于指示性的目的并非限制性的。

在之前描述图1图示在延伸阶段过程中以及温度变化过程中的不同温 度的调节程序,所述温度做为在根据现有技术的最大功率处运行的过程中的 该阶段的过程中的功率的函数。

图2图示作为负荷下降过程中的功率的函数的温度的变化的例子,所述 负荷的下降在根据本发明的延伸阶段过程中发生。

图3图示作为负荷下降过程中的功率的函数的温度的变化的例子,所述 负荷的下降在根据现有技术的延伸阶段过程中发生。

具体实施方式

如之前在图1中所描述的,当反应堆在一正常运行周期后进入到“延 伸”时,一第一阶段包括尽可能多地保存反应堆在100%的额定功率(PN) 处的热功率。该第一阶段在图1的点A与点B之间图示。保持100%的额定 功率通过随着在二回路的压力(和平均温度)下降而增加涡轮入口阀的开口 来实现。该第一阶段的末端对应于到达涡轮入口阀的完全开口(点B)。

涡轮入口阀完全地张开,功率当蒸汽压力下降时可以不再维持在100%。 反应堆的最大热功率因此随着主冷却剂的平均温度下降以及蒸汽压力的下 降而下降。该阶段显示在图1的点B与点H之间。其在之前所描述的第一 阶段后发生,并对应于在由涡轮处的蒸汽压力所限制的全功率处反应堆的功 率的演变。该限制在下文由“涡轮限制”所指示并由图1中的被标为LT的 虚线所表示。

根据现有技术,在之前所描述的该A-B阶段然后B-H阶段的过程中, 当温度到达温度程序Pi的死区的下限时,温度程序随着温度下降而由程序 P1至Pi+1变化。

根据本发明的方法,在最大功率处的反应堆的温度的变化也由在涡轮处 的蒸汽压力所限制。在另外一方面,温度自由地变化并不再根据温度调节程 序Pi来调节。然而,当最大功率在“延伸”过程中被维持时,作为功率的函 数的温度的变化保持为等于根据之前现有技术所描述的变化。

图2和3图示特别在负荷下降过程中根据本发明的控制方法在“延伸” 中所提供的增益。

更具体地,图2图示作为负荷下降过程中的根据本发明的功率的函数的 温度的变化的例子,所述负荷的下降在之前所描述的延伸阶段过程中发生。

作为比较,图3图示作为负荷下降过程中的功率的函数的温度的变化的 例子,所述负荷的下降在根据现有技术的控制方法的延伸阶段过程中发生。

参考图2,在负荷下降的实现过程中,例如在80%的额定功率处的低级, 从点C使用通过控制棒组的插入专门控制功率的轴向分布的本发明的控制 方法,主冷却剂的平均温度在给定用于控制功率的轴向分布的棒组的插入的 累积效应和通过平均温度的反应性的其它效应的补偿下通常将提升一点。该 负荷的下降是快速的(几分钟)并在图2中的点C和点D之间表示。在该 负荷下降的低级处(额定功率的80%),氙增长在不修改额定功率(点D 至点G)下被平均温度的可能下降抵消。这样,在该负荷下降后,只要平均 温度不到达涡轮限值LT(点G),反应堆就可以继续在该低级处运行。一 旦温度到达涡轮限值,根据在主冷却剂中的氙浓度,平均温度可以下降(当 氙浓度高时)从而导致反应堆的热功率的下降(点G至点H),或也可以升 高(当氙浓度低时)使其可获得功率的增加,从而到达例如在涡轮限值LT (点G至点H’或甚至点C)后的可能的最大功率。在整个该阶段中,功率 的轴向分布继续通过控制棒组的移动来被控制。

这样,在负荷下降后,如之前所描述的那样,根据本发明的控制方法使 待制造的反应堆能够以其最大功率运行更久。

而且,根据本发明的控制方法也可以在负荷下降后使功率提升,如在点 E与点F之间的虚线所表示的,只要没有到达涡轮限值。以相同的方式,当 温度到达涡轮限值时,温度的变化(提升或下降)将取决于在涡轮限值(点 F)到达的时刻的氙浓度。

也可以限定主冷却剂的平均温度的变化的上限和下限。上限在正常运行 Pref过程中例如可是为反应堆功率的函数的基准温度调节曲线。下限例如可 是为变化-Y℃的反应堆的功率的函数的温度调节曲线,Y包括在5与50 之间,优选地在5与30之间,对应于在延伸阶段的末端处的温度曲Pn线。 作为例子,延伸阶段的持续时间通常是30天和可持续达60天。

在一变例中,在图2中被标为Tmin的下限对应于等于在额定功率的100% 处变化-Z℃的基准温度的固定温度,Z包括在10与50之间,优选地在20 与30之间。

因此由上限和下限限制的温度范围实际上包含在一范围内,所述范围是 根据现有技术的方法的“延伸”阶段中安全研究的主题。

在主冷却剂的平均温度到达其中温度可以自由变化的温度范围的上限 或下线的情况下,如果那可能就可以通过优先对棒组起作用、然后对功率起 作用,如果不能对功率起作用,则最后对硼浓度起作用来进行干涉。

可以使用作为用于控制主冷却剂的温度的致动器的控制棒组和硼注射 系统两者。这对于用于控制功率的轴向分布的致动器也是如此。

用于获取主冷却剂的平均温度的传感器例如是用于测量位于芯的燃料 组件(被称为输出芯热耦)的出口处的主冷却剂的温度的传感器。

热功率可以例如使用位于容器的外侧并测量完成输出芯热耦的芯的中 子通量的传感器(被称为芯前传感器)来计算。

这样,作为例子,当平均温度到达温度范围的上限时,第一动作如果可 能包括插入棒组。然而,如果功率的轴向分布过度朝向芯的底部前进(也就 是说,在芯的底部比在顶部存在更大的通量),则控制棒组的插入是不可能 的,因为那将甚至进一步使功率的轴向分布不平衡,如果其不是已经在其最 大功率处,则可以提升功率,并可能同时潜在地抽出控制棒组。如果因为其 已经在其最大极限处而不可以提升功率,则可执行一硼操作。

如果温度到达下限,例如从图2的点H,如果棒组没有在芯内的上限处, 以及如果功率的轴向分布没有过于朝向芯的顶部,则优先抽出控制棒组。如 果不可能抽出控制棒组,则功率被减小,如果可能的话,棒组被插入。

使用根据现有技术的调节原理,反应堆的平均温度的调节将迫使调节在 基准温度曲线后的负荷下降之后的温度的下降并因此降低反应堆的热功率。 作为比较,根据相同条件的反应堆的行为但根据先有技术的控制原理进行的 控制显示在图3中。

当从与参考图2的之前描述的点相同的点C处实现负荷的下降时,根 据现有技术的控制方法将迫使调节温度,使得主冷却剂的平均温度对应于温 度曲线Pi。该负荷的下降表示在图3中的点C与点D之间。在该负荷下降 后,平均温度的下降将继续根据相同温度曲线(点D到点E’)而进行调节, 所述相同的温度曲线暗示着考虑控制温度的必要性而不过度搅乱功率的轴 向分布的反应堆的功率的下降。这实际上可能导致操作人员在该负荷下降后 马上停止反应堆。

而且,根据现有技术,在负荷下降后,不可能达到涡轮限值的恒定功率 进行操作。

在延伸阶段中的控制方法无论反应堆的控制模式怎么样都是可应用的。 这样,如果反应堆具有几种类型的带有不同中子吸收能力的控制棒组,则在 延伸阶段中的功率的轴向分布的调节是相同的,但是附加的调节自由度使其 可进一步在该延伸阶段优化反应堆的控制。

根据本发明的控制方法已经使用线性温度调节程序特别地进行描述,然 而,本发明无论温度调节程序的曲线是什么样的均也可应用。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号