首页> 中国专利> 一种噻二唑基二羧酸铽配合物及其制备方法和应用

一种噻二唑基二羧酸铽配合物及其制备方法和应用

摘要

本发明公开了一种噻二唑基二羧酸铽配合物及其制备方法和应用,该配合物的化学式为Tb

著录项

  • 公开/公告号CN105017294A

    专利类型发明专利

  • 公开/公告日2015-11-04

    原文格式PDF

  • 申请/专利权人 渤海大学;

    申请/专利号CN201510335431.8

  • 申请日2015-06-12

  • 分类号C07F5/00;C09K11/06;H01F1/42;

  • 代理机构

  • 代理人

  • 地址 121013 辽宁省锦州市松山新区科技路19号

  • 入库时间 2023-12-18 11:47:40

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-07-10

    未缴年费专利权终止 IPC(主分类):C07F5/00 授权公告日:20171222 终止日期:20190612 申请日:20150612

    专利权的终止

  • 2017-12-22

    授权

    授权

  • 2015-12-02

    实质审查的生效 IPC(主分类):C07F5/00 申请日:20150612

    实质审查的生效

  • 2015-11-04

    公开

    公开

说明书

技术领域

本发明涉及光磁双功能材料制备领域,具体涉及一种噻二唑基二羧酸铽配合物及其制备方法和应用。

背景技术

多样的结构以及在发光、磁学等领域的潜在应用使得稀土金属有机配合物受到配位化学工作者的广泛关注。众所周知,由于具有强的配位和电荷平衡能力,有机羧酸化合物被广泛用于制备稀土金属有机配合物。近年来,作为一类重要的有机羧酸化合物,含氮羧酸越来越多地被用于合成稀土金属有机配合物。这是因为该类化合物不仅可能敏化稀土离子发光,而且由该类化合物构筑的稀土金属有机配合物也可能同时具有好的磁学性质,因此使用该类化合物可能制备出兼具发光和磁学性质的双功能配合物材料。2,5-双(羧甲基巯基)-1,3,4-噻二唑酸是一种柔性的多齿含氮二羧酸,基于它的稀土金属有机配合物还罕见报道。因此,有必要合成并结构表征该类稀土金属有机配合物,研究其物理化学性质,以期获得光磁双功能材料。

发明内容

为解决上述问题,本发明提供了一种合成方法简单、合成原料成本低、表现出良好光磁双功能性质的噻二唑基二羧酸铽配合物及其制备方法和应用。

为实现上述目的,本发明采取的技术方案为:

一种噻二唑基二羧酸铽配合物,其特征在于,所述配合物的化学式为Tb2(bct)3(H2O)5,式中,bct为2,5-双(羧甲基巯基)-1,3,4-噻二唑阴离子;所述配合物包含两种检晶学独立的Tb离子,bct阴离子的羧基连接Tb离子形成双核Tb簇和一维Tb链,双核Tb簇和一维Tb链相连形成二维层,二维层与bct阴离子相连形成三维骨架结构。

为解决上述问题,本发明还提供了一种噻二唑基二羧酸铽配合物的制备方法,包括以下步骤:

S1、将三氯化铽和2,5-双(羧甲基巯基)-1,3,4-噻二唑酸按1∶2.5的摩尔比混合后,加入去离子水中,用NaOH溶液调节pH值至7;

S2、将步骤S1所得的溶液转入高压反应釜中升温至120摄氏度,保温20小时,缓慢降至室温得白色块状晶体,过滤并用去离子水洗涤,自然晾干,得配合物。

其中,所述的三氯化铽为TbCl3·6H2O,去离子水的加入量为高压反应釜容积的30%。

其中,NaOH的浓度为0.1mol/L。

上述的一种噻二唑基二羧酸铽配合物可作为光磁双功能材料应用。

本发明具有以下有益效果:

1.合成方法简单,合成原料易得,成本低,产量高;

2.水热条件下合成的噻二唑基二羧酸铽配合物水溶性差,在常见的有机溶剂中也很难溶解,防止了对环境的二次污染;

3. 2,5-双(羧甲基巯基)-1,3,4-噻二唑阴离子易与铽离子配位,其羧基阴离子的引入不仅有利于平衡电荷,而且增加了配体的亲水性,加快了配合物的结晶过程,缩短了合成周期,降低了耗电量;

4. 2,5-双(羧甲基巯基)-1,3,4-噻二唑阴离子的柔性使其具有配位多样性,提高了配合物的产率,降低了成本;

5.噻二唑基二羧酸铽配合物呈现了光致发光和铁磁有序的双功能性质,可能作为光磁双功能材料应用。

附图说明

图1为本发明实施例Tb2(bct)3(H2O)5中Tb离子的配位环境图;

图2为本发明实施例Tb2(bct)3(H2O)5中双核Tb簇(左)和一维Tb链(右)的结构图;

图3为本发明实施例Tb2(bct)3(H2O)5的二维层结构图;

图4为本发明实施例Tb2(bct)3(H2O)5的三维骨架结构图;

图5为本发明实施例Tb2(bct)3(H2O)5的X射线粉末衍射图;

图6为本发明实施例Tb2(bct)3(H2O)5的热重和差热曲线图;

图7为本发明实施例Tb2(bct)3(H2O)5的室温固态激发和发射光谱图;

图8为本发明实施例Tb2(bct)3(H2O)5的发光寿命图(实线为最佳拟合);

图9为本发明实施例Tb2(bct)3(H2O)5的直流磁化率的温度依赖图;

图10为本发明实施例Tb2(bct)3(H2O)5的场冷(FC)和零场冷(ZFC)磁化曲线图(插图为局部放大)。

具体实施方式

为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例

将0.1mmol的TbCl3·6H2O和0.25mmol的2,5-双(羧甲基巯基)-1,3,4-噻二唑酸依次加入到7mL去离子水中,用0.1mol/L的NaOH溶液5mL调节混合物的pH值至7,然后将混合物转移到高压反应釜中,升温至120摄氏度,保温20小时,缓慢降至室温得白色块状晶体Tb2(bct)3(H2O)5,过滤并用去离子水洗涤,自然晾干,得配合物。

在显微镜下挑取大小合适的单晶,使用Bruker SMART APEX II型X射线单晶衍射仪在室温下收集衍射数据,使用SADABS程序对衍射数据进行吸收校正,使用SAINT和SHELXTL程序解析衍射数据,使用最小二乘法对晶体结构进行精修。图1至图4为Tb2(bct)3(H2O)5的晶体结构图,其中图1为Tb2(bct)3(H2O)5的配位环境图,显示Tb2(bct)3(H2O)5包含两种检晶学独立的Tb离子(Tb1和Tb2);图2为bct阴离子的羧基连接Tb离子形成的双核Tb簇和一维Tb链的结构图;图3为bct阴离子连接上述的双核Tb簇和一维Tb链形成的二维层结构图;图4为bct阴离子连接上述的二维层形成的三维骨架结构图。

使用Rigaku Ultima IV型X射线粉末衍射仪收集粉末衍射数据,扫描模式为2θ/θ,扫描范围为5至50度,使用Cerius2程序拟合粉末衍射数据,使用Mercury1.4.1软件进行单晶结构的粉末衍射模拟。图5为Tb2(bct)3(H2O)5的粉末衍射图,实测的粉末衍射图与模拟的基本一致,表明了批量产品的相纯度。

使用PE-Pyris Diamond S-II型热分析仪收集热重和差热数据,加热速率为10℃/min,温度范围为30至800摄氏度。图6为Tb2(bct)3(H2O)5的热重及差热曲线图,Tb2(bct)3(H2O)5在160至200摄氏度温度区间内失去配位水分子,然后基本保持稳定,直到280摄氏度骨架开始坍塌,表明批量产品具有一定的热稳定性。

使用FLS 920型稳态荧光和磷光寿命光谱仪收集光致发光数据。图7为Tb2(bct)3(H2O)5的室温固态激发和发射光谱图,显示了强的bct配体敏化的绿色的Tb离子发光;图8为Tb2(bct)3(H2O)5的发光寿命图,表明Tb2(bct)3(H2O)5具有相对长的发光寿命。

使用Quantum Design MPMSXL7型超导磁性测定仪收集直流磁性数据。图9为Tb2(bct)3(H2O)5的直流磁化率的温度依赖图,显示Tb2(bct)3(H2O)5中Tb离子间存在明显的铁磁相互作用,并且可能存在铁磁有序现象;图10为Tb2(bct)3(H2O)5的场冷(FC)和零场冷(ZFC)磁化曲线图,进一步验证了Tb2(bct)3(H2O)5的铁磁有序行为。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号