首页> 中国专利> 一种基于聚合物纳米粒子稳定油包水型高内相乳液的多孔材料制备方法

一种基于聚合物纳米粒子稳定油包水型高内相乳液的多孔材料制备方法

摘要

本发明公开了一种以苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子稳定的油包水型高内相乳液为前驱体,通过冷冻干燥这一物理方式制备超低密度聚合物多孔材料的方法。步骤如下:将电解质加入到苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液中,待电解质搅拌溶解后作为水相,随后将水相缓慢倒入油相中,在磁力搅拌的作用下形成油包水型高内相乳液。待高内相乳液在室温下放置一段时间后,将其冷冻干燥形成低密度聚合物多孔材料。本发明的制备方法简单易行,绿色环保,可获得不含乳化剂的超低密度聚合物多孔材料,其密度介于0.027~0.10克每立方厘米之间,孔径在20~100微米之间。

著录项

  • 公开/公告号CN102838773A

    专利类型发明专利

  • 公开/公告日2012-12-26

    原文格式PDF

  • 申请/专利权人 华东理工大学;

    申请/专利号CN201210365704.X

  • 申请日2012-09-26

  • 分类号C08J9/28;C08L53/00;

  • 代理机构

  • 代理人

  • 地址 200237 上海市徐汇区梅陇路130号

  • 入库时间 2023-12-18 07:46:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-11-10

    未缴年费专利权终止 IPC(主分类):C08J9/28 授权公告日:20140528 终止日期:20160926 申请日:20120926

    专利权的终止

  • 2014-05-28

    授权

    授权

  • 2013-02-13

    实质审查的生效 IPC(主分类):C08J9/28 申请日:20120926

    实质审查的生效

  • 2012-12-26

    公开

    公开

说明书

技术领域

本发明涉及一种超低密度聚合物多孔材料的制备方法,具体涉及采用聚合物纳米粒子水分散液为水相,以甲苯、二甲苯或氯仿为油相,制备油包水型高内相乳液,将该乳液在室温下放置一段时间后,再将其冷冻干燥制备超低密度聚合物多孔材料的方法。 

背景技术

聚合物多孔材料具有高孔隙率、低密度、大比表面积和很好的物质输送能力等优点,在吸附与分离、催化、生物组织工程以及环境科学等方面有着很高的应用价值因此引起人们极大的兴趣。聚合物多孔材料的制备方法已有多种见报,如采用超临界流体、鼓气、胶体模板组装、聚合物前驱模板法及高内相乳液模板法。其中高内相乳液模板法制得的聚合物多孔材料有许多优点,如:大孔孔径和孔径分布可调,孔容积大,制品外观形貌可以根据模具任意成型,有一定的力学稳定性及其表面可以根据不同使用环境功能化等。这些优点使高内相乳液模板法制得的聚合物多孔材料的研究和制备对于科学研究和生产实践有着重要的意义。迄今,高内相乳液模板法制备的聚合物多孔材料已在如生物工程支架、催化剂载体、离子交换树脂和电化学传感器等多个领域向人们展示了广阔的应用前景。高内相乳液即分散相体积百分数大于等于74.05%的乳液。这一乳液自从二十世纪六十年首次报道 以来,作为模板来制备开孔聚合物材料,已经有众多的文献报道,如道化学公司于2000年申请的美国专利(US Pat 6,147,131)及卡梅隆、比斯麦和章圣苗等于聚合物杂志上发表的一系列文章等。然而已见报的工作在制备高内相乳液过程中大多采用的乳化剂还仅限于非离子型乳化剂或非离子型乳化剂与少量的离子型乳化剂的混合物,且非离子型乳化剂的用量很大,占到体系中单体用量的5~50%,大量乳化剂的存在既提高了材料的成本,又使得其应用受到了很多限制,降低了材料的力学性能,并容易造成环境的污染。 

采用纳米粒子取代乳化剂稳定的乳液即Pickering乳液已有报道,这一类型乳液有即不含乳化剂又稳定性好等特点。然而,已见报的纳米粒子稳定的乳液的分散相体积分数小于70%,不能用于制备聚合物多孔材料。 

近年来,仅章圣苗等成功采用聚合物纳米子稳定水包油和油包水型高内相乳液,并制备了亲水性和疏水性聚合物多孔材料(ZL2009102013081、ZL2009102013096)。然而所涉制备方法均需通过对高内相乳液进行加热等方式,引发其连续相中的单体聚合,这不仅限制了多孔材料基体材料的类型,也对乳液本身的稳定性提出了比较高的要求。迄今,采用无需化学反应如直接冷冻干燥聚合物纳米粒子稳定的油包水型高内相乳液来得到多孔材料的方法则尚未有成功的报道。 

本发明公开了一种采用苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液为水相,特定的有机溶剂为油相,以水相中 的聚合物纳米粒子稳定油包水型高内相乳液,聚合物溶胀在有机溶剂中形成交联结构,除去有机溶剂和电解质,得到超低密度聚合物多孔材料的方法。直接冷冻干燥得到多孔材料简化了实验步骤,并实现了聚合物多孔材料制备过程的无乳化剂。 

发明内容

本发明需要解决的技术问题是公开一种新的通过物理方式制备不含乳化剂的聚合物多孔材料的方法。 

本发明所述的制备无乳化剂的聚合物多孔材料的乳液模板法,包括如下步骤: 

将一定量的电解质加入到聚合物纳米粒子水分散液中,搅拌溶解作为水相,以能溶解聚合物纳米粒子的有机溶剂为油相,在恒定温度下,将水相滴入油相,继续搅拌,形成油包水型高内相乳液,在室温下放置一定的时间后,以该乳液为前驱体,将其冷冻干燥,形成超低密度聚合物多孔材料; 

所说的能溶解聚合物纳米粒子有机溶剂为甲苯、二甲苯或氯仿,其在乳液中所占的质量分数为10%~30%; 

水相占乳液整体的质量百分数:70%~90%; 

所说的聚合物纳米粒子是苯乙烯、丙烯酸、甲基丙烯酸三嵌段共聚物;聚合物纳米粒子是在氮气保护下,在引发剂(过硫酸铵)作用下,通过无皂乳液聚合法聚合得到的; 

所说的聚合物纳米粒子水分散液其固含量质量百分数为3~12%;聚合物纳米粒子水分散液是由苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌 段共聚物纳米粒子分散在去离子水中得到的; 

所说的电解质为氯化钠、氯化钙、氯化镁,相对于水相的质量百分数为0~3.6%; 

采用扫描电镜(SEM)S-4800(日本JEOL公司)观测聚合物多孔材料的孔形貌,并测定其孔径;多孔材料表观密度由样品质量除以其体积计算所得。 

本发明的制备方法操作简便,经室温下稳定放置后直接冷冻干燥,即可获得孔径在20~100微米、密度介于0.027~0.10克每立方厘米之间的超低密度多孔材料。 

具体实施方式

实施例1 

以3克甲苯作为油相,以27克固含量为6%的苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液作为水相,在25摄氏度恒温环境下,将水相缓慢加入油相中,搅拌,形成稳定的高内相乳液。并立即将此乳液用液氮冷冻固定形貌,冷冻干燥后,便得到所需的多孔材料。 

所得多孔材料的孔径约为100微米,密度为0.052克每立方厘米。 

实施例2 

以3克甲苯作为油相,将0.316克氯化钠加入到27克固含量为3%的苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液中,搅拌,溶解后作为水相,在0摄氏度恒温环境下,将水相缓慢加入油相中,搅拌,形成稳定的高内相乳液。随后将高内相乳液在室温下放置12小时后用液氮冷冻固定形貌,冷冻干燥,便得到所需的多孔材料。 

所得多孔材料的孔径约为20微米,密度为0.027克每立方厘米。 

实施例3 

以3克二甲苯作为油相,将0.316克氯化钠加入到27克固含量为12%的苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液中,搅拌,溶解后作为水相,在50摄氏度恒温环境下,将水 相缓慢加入油相中,搅拌,形成稳定的高内相乳液。随后将高内相乳液在常温下放置1天后用液氮冷冻固定形貌,冷冻干燥,便得到所需的多孔材料。 

所得多孔材料的孔径约为30微米,密度为0.10克每立方厘米。 

实施例4 

以6克氯仿作为油相,将0.632克氯化钠加入到24克固含量为9%的苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液中,搅拌,溶解后作为水相,在25摄氏度恒温环境下,将水相缓慢加入油相中,搅拌,形成稳定的高内相乳液。随后将高内相乳液在常温下放置4天后用液氮冷冻固定形貌,冷冻干燥,便得到所需的多孔材料。 

所得多孔材料的孔径约为40微米,密度为0.071克每立方厘米。 

实施例5 

以9克甲苯作为油相,将0.316克氯化钠加入到21克固含量为9%的苯乙烯、丙烯酸、甲基丙烯酸甲酯三嵌段共聚物纳米粒子水分散液中,搅拌,溶解后作为水相,在25摄氏度恒温环境下,将水相缓慢加入油相中,搅拌,形成稳定的高内相乳液。随后将高内相乳液在常温下放置7天后用液氮冷冻固定形貌,冷冻干燥,便得到所需的多孔材料。 

所得多孔材料的孔径约为40微米,密度为0.06克每立方厘米。 

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号