首页> 中国专利> 多孔金属管表面氧化锆过渡层的制备方法

多孔金属管表面氧化锆过渡层的制备方法

摘要

本发明公开了一种多孔金属管表面氧化锆过渡层的制备方法,包括以下步骤:将锆粉与去离子水或无水乙醇混合,搅拌均匀,配制成粉末悬浮液;将多孔金属管两端用软管与循环水式真空泵连接,然后将所述多孔金属管浸入到粉末悬浮液中,开启循环水式真空泵负压抽吸,所述粉末悬浮液中的锆粉被截留在多孔金属管的外表面,从而形成一层锆膜,之后在室温下晾干;将所述锆膜的一端点燃,直至燃烧反应蔓延到锆膜的另一端,得到多孔金属管表面氧化锆过渡层。本发明不需要大型设备、工艺简单、操控简便、节能环保,采用本制备方法制备的多孔金属管表面氧化锆过渡层可有效地减小多孔金属管的表面孔径,提高氧化锆膜与多孔金属管结合强度以及钯复合膜的使用寿命。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-06-18

    授权

    授权

  • 2012-12-26

    实质审查的生效 IPC(主分类):B01D71/02 申请日:20120810

    实质审查的生效

  • 2012-10-31

    公开

    公开

说明书

技术领域

本发明属于钯复合膜过渡层制备技术领域,具体涉及一种多孔金属管 表面氧化锆过渡层的制备方法。

背景技术

近年发展起来的将钯合金膜附着在多孔载体上的钯复合膜,通过多孔 载体保持钯复合膜强度,降低钯合金膜厚度,大大提高了钯膜的氢渗透系 数。

多孔载体主要包括多孔陶瓷与多孔金属。鉴于多孔陶瓷易碎、可加工 性能差、与组件连接困难、与钯及其合金的热膨胀系数相差大等缺点,多 孔金属载体成为当前的研究热点。但是多孔金属的孔径很难进一步缩小, 选用多孔金属作为多孔载体时,要在其表面制备一层薄的无缺陷钯膜,难 度太大;此外,由于在高温条件下钯及其合金与多孔金属之间的元素扩散, 降低了钯复合膜的使用寿命。因此,在多孔金属表面制备氧化物陶瓷过渡 层是解决上述问题最有效的方法之一,采用的方法主要是溶胶凝胶法和气 相沉积法。溶胶凝胶法工艺繁复,形成的氧化物颗粒为纳米级,容易进入 多孔金属支撑体的孔隙内,堵塞孔道,降低多孔金属支撑体的透气性;气 相沉积法虽然在平板状多孔金属表面进行了成功的镀覆,但解决不了多孔 金属管表面的均匀镀覆问题。

发明内容

本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一 种工艺简单、设计合理、节能环保、易于实现的多孔金属管表面氧化锆过 渡层的制备方法。

为解决上述技术问题,本发明采用的技术方案是:一种多孔金属管表 面氧化锆过渡层的制备方法,其特征在于,该方法包括以下步骤:

步骤一、将锆粉与去离子水或无水乙醇混合,搅拌均匀,配制成悬浮 液;

步骤二、将多孔金属管两端用软管与循环水式真空泵连接,然后将所 述多孔金属管浸入到步骤一中所述悬浮液中,开启循环水式真空泵进行负 压抽吸,步骤一中所述悬浮液中的锆粉被截留在多孔金属管的外表面,从 而在多孔金属管的外表面形成锆膜,之后将外表面形成有锆膜的多孔金属 管在室温下晾干;

步骤三、将步骤二中所述多孔金属管一端的锆膜点燃,直至燃烧反应 蔓延到多孔金属管的另一端,燃烧反应后得到多孔金属管表面氧化锆过渡 层。

上述的多孔金属管表面氧化锆过渡层的制备方法,其特征在于,步骤 一中所述锆粉的费氏平均粒度不大于1.5μm,所述粉末悬浮液的固含量为 5~15%。

上述的多孔金属管表面氧化锆过渡层的制备方法,其特征在于,步骤 二中所述多孔金属管的外径为4mm~8mm,所述多孔金属管的壁厚为 1mm,所述多孔金属管的孔径≤10μm,所述多孔金属管为不锈钢管、铁铝 合金管或镍铝合金管。

上述的多孔金属管表面氧化锆过渡层的制备方法,其特征在于,步骤 二中所述循环水式真空泵负压抽吸的时间为3min~8min;所述循环水式 真空泵负压抽吸时的真空度为10-1MPa。

本发明与现有技术相比具有以下优点:

1、本发明制备工艺简单,设计合理,节能环保,易于实现。

2、本发明制备的多孔金属管表面氧化锆过渡层可有效地减小金属多 孔管的表面孔径,阻止高温下钯及其合金与多孔金属之间的元素扩散,提 高氧化锆膜与多孔金属管结合强度以及钯复合膜的使用寿命。

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

图1为本发明多孔金属管表面氧化锆过渡层的涂覆装置示意图。

图2为本发明制备的多孔金属管表面氧化锆过渡层的结构示意图。

图3为本发明多孔金属管的立体结构示意图。

附图标记说明:

1—循环水式真空泵;  2—悬浮液;    3—软管;

4—搅拌子;          5—多孔金属管;6—氧化锆过渡层。

具体实施方式

实施例1

本实施例的多孔金属管表面氧化锆过渡层的制备方法包括以下步骤:

步骤一、将费氏平均粒度为1.5μm的锆粉与去离子水混合,搅拌均匀, 配制成悬浮液2;所述悬浮液2的固含量为15%;

步骤二、将外径为6mm的多孔金属管5两端用聚四氟乙烯软管3与 循环水式真空泵1连接,然后将所述多孔金属管5浸入到步骤一中所述悬 浮液2中,开启循环水式真空泵1负压抽吸3min,步骤一中所述悬浮液2 中的锆粉被截留在多孔金属管5的外表面,从而在多孔金属管5的外表面 形成锆膜,之后将外表面形成有锆膜的多孔金属管5在室温下晾干;所述 多孔金属管5的壁厚为1mm;所述多孔金属管5的孔径≤10μm;所述多 孔金属管5为不锈钢管;所述循环水式真空泵1负压抽吸时的真空度为 10-1MPa;

步骤三、将步骤二中所述多孔金属管5一端的锆膜点燃,直至燃烧反 应蔓延到多孔金属管5的另一端,燃烧反应后得到多孔金属管5表面氧化 锆过渡层6。

采用FBP-I型多孔材料测试仪测得本实施例制备的多孔金属管5表面 氧化锆过渡层6的相对透气系数为4.4m3/m2·KPa·h;压汞法测试得多孔金 属管5表面氧化锆过渡层6的孔径≤1.2μm。

实施例2

本实施例的多孔金属管表面氧化锆过渡层的制备方法包括以下步骤:

步骤一、将费氏平均粒度为1.1μm锆粉与无水乙醇混合,搅拌均匀, 配制成悬浮液2;所述悬浮液2的固含量为12%;

步骤二、将外径为4mm的多孔金属管5两端用聚氯乙烯软管3与循 环水式真空泵1连接,然后将所述多孔金属管5浸入到步骤一中所述悬浮 液2中,开启循环水式真空泵1负压抽吸3min,步骤一中所述悬浮液2 中的锆粉被截留在多孔金属管5的外表面,从而在多孔金属管5的外表面 形成锆膜,之后将外表面形成有锆膜的多孔金属管5在室温下晾干;所述 多孔金属管5的壁厚为1mm;所述多孔金属管5的孔径≤10μm;所述多 孔金属管5为铁铝合金管;所述循环水式真空泵1负压抽吸时的真空度为 10-1MPa;

步骤三、将步骤二中所述多孔金属管5一端的锆膜点燃,直至燃烧反 应蔓延到多孔金属管5的另一端,燃烧反应后得到多孔金属管5表面氧化 锆过渡层6。

采用FBP-I型多孔材料测试仪测得本实施例制备的多孔金属管5表面 氧化锆过渡层6的相对透气系数为4.8m3/m2·KPa·h;压汞法测试得多孔金 属管5表面氧化锆过渡层6的孔径≤1.2μm。

实施例3

本实施例的多孔金属管表面氧化锆过渡层的制备方法包括以下步骤:

步骤一、将费氏粒度为0.8μm锆粉与去离子水混合,搅拌均匀,配制 成悬浮液2;所述悬浮液2的固含量为5%;

步骤二、将外径为8mm的多孔金属管5两端用聚丙烯软管3与循环 水式真空泵1连接,然后将所述多孔金属管5浸入到步骤一中所述悬浮液 2中,开启循环水式真空泵1负压抽吸5min,步骤一中所述悬浮液2中的 锆粉被截留在多孔金属管5的外表面,从而在多孔金属管5的外表面形成 锆膜,之后将外表面形成有锆膜的多孔金属管5在室温下晾干;所述多孔 金属管5的壁厚为1mm;所述多孔金属管5的孔径≤10μm;所述多孔金 属管5为镍铝合金管;所述循环水式真空泵1负压抽吸时的真空度为 10-1MPa;

步骤三、将步骤二中所述多孔金属管5一端的锆膜点燃,直至燃烧反 应蔓延到多孔金属管5的另一端,燃烧反应后得到多孔金属管5表面氧化 锆过渡层6。

采用FBP-I型多孔材料测试仪测得本实施例制备的多孔金属管5表面 氧化锆过渡层6的相对透气系数为5.2m3/m2·KPa·h;压汞法测试得多孔金 属管5表面氧化锆过渡层6的孔径≤1.6μm。

实施例4

本实施例的多孔金属管表面氧化锆过渡层的制备方法包括以下步骤:

步骤一、将费氏粒度为1.5μm锆粉与无水乙醇混合,搅拌均匀,配制 成悬浮液2;所述悬浮液2的固含量为10%;

步骤二、将外径为8mm的多孔金属管5两端用聚乙烯软管3与循环 水式真空泵1连接,然后将所述多孔金属管5浸入到步骤一中所述悬浮液 2中,开启循环水式真空泵1负压抽吸8min,步骤一中所述悬浮液2中的 锆粉被截留在多孔金属管5的外表面,从而在多孔金属管5的外表面形成 锆膜,之后将外表面形成有锆膜的多孔金属管5在室温下晾干;所述多孔 金属管5的壁厚为1mm;所述多孔金属管5的孔径≤10μm;所述多孔金 属管5为不锈钢管;所述循环水式真空泵1负压抽吸时的真空度为 10-1MPa;

步骤三、将步骤二中所述多孔金属管5一端的锆膜点燃,直至燃烧反 应蔓延到多孔金属管5的另一端,燃烧反应后得到多孔金属管5表面氧化 锆过渡层6。

采用FBP-I型多孔材料测试仪测得本实施例制备的多孔金属管5表面 氧化锆过渡层6的相对透气系数为6.6m3/m2·KPa·h;压汞法测试得多孔金 属管5表面氧化锆过渡层6的孔径≤2.3μm。

以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡 是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效 变化,均仍属于本发明技术方案的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号