首页> 中国专利> 在对等网络中的对等设备发现中传送标识符的编码方法

在对等网络中的对等设备发现中传送标识符的编码方法

摘要

描述了有助于在对等网络中在对等设备发现期间基于已编码信号来识别对等设备的系统和方法。例如,可以利用将时间-频率资源划分为多个段的直接信号传送来在对等设备发现间隔内传送标识符;因此,被选择用于传输的特定段可以以信号方式传送标识符的一部分,可以基于在所选择的段内传送的音调来以信号方式传送剩余部分。此外,可以保留(例如,不使用)资源内的符号的子集以便能够识别和/或校正定时偏移。此外,可以在多个对等设备发现间隔上实现信号传送,使得能够链接在每个对等设备发现间隔期间传送的部分标识符(例如,基于重叠比特和/或bloom滤波器信息)。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-03-06

    授权

    授权

  • 2010-08-11

    实质审查的生效 IPC(主分类):H04W8/00 申请日:20080702

    实质审查的生效

  • 2010-06-09

    公开

    公开

说明书

技术领域

下面的描述主要涉及无线通信,并且更具体地涉及在对等网络中在对等设备发现期间基于已编码的信号来识别对等设备。

背景技术

无线通信系统被广泛地用以提供各种类型的通信;例如,经由该无线通信系统可以提供语音和/或数据。典型的无线通信系统或网络可以向多个用户提供对一个或多个共享资源的访问。例如,系统可以使用各种多址技术,比如频分复用(FDM)、时分复用(TDM)、码分复用(CDM)、正交频分复用(OFDM)等。

普通无线通信系统运用提供覆盖区域的一个或多个基站。典型基站可以发送多个数据流用于广播、多播和/或单播服务,其中数据流可以是对无线终端而言具有独立接收兴趣的数据的流。这种基站的覆盖区域内的无线终端可以用于接收由复合流携带的一个、一个以上或者所有数据流。同样,无线终端可以向基站或另一无线终端发送数据。

无线通信系统利用无线频谱的各个部分用于传送数据。然而,无线频谱是昂贵的且有价值的资源。例如,希望在无线频谱的一部分上(例如,在许可的频谱内)运营无线通信系统的公司可能会承受较大的成本。此外,传统技术通常提供对无线频谱的低效利用。根据普通示例,通常没有在时间和空间上均匀地利用为广域网蜂窝通信分配的频谱;因此,在给定地理位置或在给定时间间隔中可能没有使用频谱的较大子集。

根据另一例子,无线通信系统经常运用对等或ad hoc体系结构,从而无线终端可以直接向另一无线终端传送信号。因此,信号不需要经过基站;而且,在彼此范围内的无线终端可以发现和/或直接通信。然而,传统对等网络通常以异步方式工作,从而对等设备可以在特定时间实现不同的任务。因此,对等设备会遇到与识别和/或与范围内的不同对等设备进行通信、可能低效利用功率等相关联的困难。

发明内容

下面给出了一个或多个实施例的简要概述,以便提供对这些实施例的基本理解。该概述不是对所有预期实施例的广泛概括,而是旨在既不指出所有实施例的关键或重要元素,也不限定任意或所有实施例的范围。其目的仅是以简化形式给出一个或多个实施例的一些概念,来作为后面给出的更具体描述的前序。

根据一个或多个实施例及其相应公开,描述了与有助于在对等网络中在对等设备发现期间基于已编码信号识别对等设备相关的各个方面。例如,可以利用将时间-频率资源划分为多个段的直接信号传送来在对等设备发现间隔内传送标识符;因此,被选择用于传输的特定段可以以信号方式传送标识符的一部分,可以基于在所选择的段内传送的音调来以信号方式传送剩余部分。此外,可以保留(例如,不使用)资源内的符号的子集以便能够识别和/或校正定时偏移。此外,可以在多个对等设备发现间隔上实现信号传送,使得能够链接在每个对等设备发现间隔期间传送的部分标识符(例如,基于重叠比特和/或bloom滤波器信息)。

根据相关方面,本文描述了一种有助于在多个对等设备发现间隔上以信号方式传送标识符的方法。该方法可以包括在第一对等设备发现间隔期间发送第一部分标识符。此外,该方法可以包括在第二对等设备发现间隔期间发送第二部分标识符,其中X个比特在所述第一部分标识符和所述第二部分标识符内重叠,X是整数。

另一方面涉及一种无线通信装置。该无线通信装置可以包括存储器,其保存与以下操作相关的指令:在第一对等设备发现间隔期间发送第一部分标识符,以及在第二对等设备发现间隔期间发送第二部分标识符,其中X个比特在所述第一部分标识符和所述第二部分标识符内重叠,X是整数。此外,该无线通信装置可以包括处理器,其耦合到所述存储器,所述处理器用于执行保存在所述存储器中的所述指令。

另一方面涉及一种能够在多个对等设备发现间隔上以信号方式传送标识符的无线通信装置。该无线通信装置可以包括:用于在第一对等设备发现间隔期间发送第一部分标识符的模块;以及用于在第二对等设备发现间隔期间发送第二部分标识符的模块,其中X个比特在所述第一部分标识符和所述第二部分标识符内重叠,X是整数。

另一方面涉及一种机器可读介质,其上存储有用于以下操作的机器可执行指令:在第一对等设备发现间隔期间发送第一部分标识符,以及在第二对等设备发现间隔期间发送第二部分标识符,其中X个比特在所述第一部分标识符和所述第二部分标识符内重叠,X是整数。

根据另一方面,一种在无线通信系统中的装置可以包括处理器,其中该处理器可以用于在第一对等设备发现间隔期间发送第一部分标识符。此外,该处理器可以用于在第二对等设备发现间隔期间发送第二部分标识符,其中X个比特在所述第一部分标识符和所述第二部分标识符内重叠,X是整数。

根据其它方面,本文描述了一种有助于基于重叠信息来链接在不同对等设备发现间隔期间获得的部分标识符的方法。该方法可以包括在第一对等设备发现间隔期间接收第一组部分标识符。此外,该方法可以包括在第二对等设备发现间隔期间接收第二组部分标识符。此外,该方法可以包括基于比特重叠来匹配所述第一组和所述第二组中的部分标识符。

另一方面涉及一种无线通信装置,其可以包括存储器,该存储器保存与以下操作相关的指令:在第一对等设备发现间隔期间接收第一组部分标识符,在第二对等设备发现间隔期间接收第二组部分标识符,以及基于比特重叠来匹配所述第一组和所述第二组中的部分标识符。该无线通信装置还可以包括处理器,其耦合到所述存储器,所述处理器用于执行保存在所述存储器中的所述指令。

另一方面涉及一种能够基于重叠信息来链接在不同对等设备发现间隔期间获得的部分标识符的无线通信装置。该无线通信装置可以包括用于在第一对等设备发现间隔期间接收第一组部分标识符的模块。此外,该无线通信装置可以包括用于在第二对等设备发现间隔期间接收第二组部分标识符的模块。此外,该无线通信装置可以包括用于基于比特重叠来匹配所述第一组和所述第二组中的部分标识符的模块。

另一方面涉及一种机器可读介质,其上存储有用于以下操作的机器可执行指令:在第一对等设备发现间隔期间接收第一组部分标识符;在第二对等设备发现间隔期间接收第二组部分标识符;以及基于比特重叠来匹配所述第一组和所述第二组中的部分标识符。

根据另一方面,一种在无线通信系统中的装置可以包括处理器,其中该处理器可以用于在第一对等设备发现间隔期间接收第一组部分标识符。此外,该处理器可以用于在第二对等设备发现间隔期间接收第二组部分标识符。此外,该处理器可以用于基于比特重叠来匹配所述第一组和所述第二组中的部分标识符。

为了实现前述及相关目标,一个或多个实施例包括下文中充分描述的并在权利要求中明确指出的特征。以下描述和附图具体阐述了一个或多个实施例的某些示例性方面。然而,这些方面仅指出了可以运用各种实施例的原理的各种方式中的一小部分,并且所描述的实施例旨在包括所有这些方面及其等价体。

附图说明

图1是根据本文给出的各个方面的无线通信系统的示图。

图2是在对等网络中的无线终端之间同步通信的示例系统的示图。

图3是由在对等环境内通信的同步对等设备所采用的示例定时图的示图。

图4是对等设备发现间隔的示例定时图的示图。

图5是在对等网络上实现同步通信的示例系统的示图。

图6是与对等设备发现间隔期间的传输相关联的示例时间一频率坐标方格的示图。

图7是能够运用可逆函数用于生成对等设备发现信号的示例系统的示图,其中采用可逆函数允许从对等网络中的接收信号中解译标识符。

图8是对利用可逆函数生成的对等设备发现信号的链接序列的估计的示例图形描绘的示图。

图9是对用于对等设备发现的直接信号传送编码方案所采用的资源的示例图形描绘的示图。

图10是从对等设备发现间隔中选择的示例段的示图。

图11是在对等设备发现期间在无线终端之间的示例定时偏移的示图。

图12是描绘在多个对等设备发现间隔上传送部分标识符以便传送用于对等设备发现的完整标识符的图形示例的示图。

图13是对用于在多个对等设备发现间隔上传送标识符的链接方案的另一示例图形描绘的示图。

图14是运用bloom滤波器来验证是否在对等设备发现期间传送标识符的方案的示例图形描绘的示图。

图15是对滑动窗口和bloom滤波器的示例图形描绘的示图。

图16是有助于在对等设备发现期间直接以信号方式传送标识符的示例方法的示图。

图17是有助于对在对等设备发现期间直接以信号方式传送的标识符进行解码的示例方法的示图。

图18是有助于在对等设备发现间隔内并入保留符号的示例方法的示图。

图19是有助于在对等设备发现内移位定时以减小偏移的示例方法的示图。

图20是有助于在多个对等设备发现间隔上以信号方式传送标识符的示例方法的示图。

图21是有助于基于重叠信息来链接在不同对等设备发现间隔期间得到的部分标识符的示例方法的示图。

图22是有助于在以信号方式传送用于对等设备发现的部分标识符时运用bloom滤波器的示例方法的示图。

图23是有助于运用Bloom滤波器以匹配部分标识符的示例方法的示图。

图24是根据各个方面实现的包括多个小区的示例通信系统的示图。

图25是根据各个方面的示例基站的示图。

图26是根据本文描述的各个方面实现的示例无线终端(例如,移动设备、端节点、...)的示图。

图27是能够在对等设备发现期间直接以信号方式传送标识符的示例系统的示图。

图28是能够在对等设备发现期间对直接以信号方式传送的标识符进行解码的示例系统的示图。

图29是能够在对等设备发现间隔内并入保留符号的示例系统的示图。

图30是能够在对等设备发现内移位定时以减小偏移的示例系统的示图。

图31是能够在多个对等设备发现间隔上以信号方式传送的标识符的示例系统的示图。

图32是能够基于重叠信息来链接在不同对等设备发现间隔期间得到的部分标识符的示例系统的示图。

图33是能够在以信号方式传送用于对等设备发现的部分标识符时运用bloom滤波器的示例系统的示图。

图34是能够运用bloom滤波器以匹配部分标识符的示例系统的示图。

具体实施方式

现在参照附图描述各种实施例,在附图中使用相同的参考标号来表示相同的元件。在以下描述中,为了说明的目的,给出了大量具体细节以便提供对一个或多个实施例的全面理解。然而,显而易见,这些实施例可以在没有这些具体细节的情况下实施。在其它实例中,以方框图形式示出了公知结构和设备以便有助于描述一个或多个实施例。

如在本申请中所使用的,术语“部件”、“模块”、“系统”等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的组合、软件或者执行中的软件。例如,部件可以是,但不局限于,在处理器上运行的进程、处理器、对象、可执行码、执行线程、程序和/或计算机。举例而言,在计算设备上运行的应用程序以及该计算设备都可以是部件。一个或多个部件可以驻留在进程和/或执行线程内,并且部件可以位于一个计算机上和/或分布在两个或多个计算机之间。此外,这些部件可以从各种计算机可读介质中执行,其中这些介质上存储有各种数据结构。部件可以通过本地和/或远程处理方式来进行通信,比如根据具有一个或多个数据分组的信号(例如,来自一个部件的数据通过信号方式与本地系统中、分布式系统中的另一部件和/或在比如因特网的网络上与其它系统进行交互)。

此外,本文描述了与无线终端相关的各个实施例。无线终端也可以称为系统、用户单元、用户台、移动台、移动装置、移动设备、远程台、远程终端、接入终端、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(UE)。无线终端可以是蜂窝电话、无绳电话、会话发起协议(SIP)电话、无线本地环路(WLL)站、个人数字助理(PDA)、具有无线连接能力的手持设备、计算设备或连接到无线调制解调器的其它处理设备。此外,本文描述了与基站相关的各个实施例。基站可以用于与无线终端进行通信,并且也可以称为接入点、节点B、或一些其它术语。

此外,本文描述的各种方面或者特征可以使用标准编程和/或工程技术实施为方法、装置或者制造产品。如本文所用术语“制造产品”旨在涵盖可从任何计算机可读设备、载体或者介质中获得的计算机程序。例如,计算机可读介质可以包括但不限于磁性存储设备(例如,硬盘、软盘、磁带等)、光盘(例如,压缩盘(CD)、数字多功能盘(DVD)等)、智能卡和闪存设备(例如,EPROM、卡、棒、钥匙型驱动等)。此外,本文描述的各种存储介质可以代表用于存储信息的一个或者多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于无线信道和能够存储、包含和/或携带指令和/或数据的各种其它介质。

现在参照图1,根据本文给出的各个实施例示出了无线通信系统100。系统100可以包括一个或多个无线终端102。尽管描绘了两个无线终端102,但是应当认识到系统100可以包括基本上任意数目的无线终端102。无线终端102可以是例如蜂窝电话、智能电话、膝上型计算机、手持通信设备、手持计算设备、卫星无线电、全球定位系统、PDA和/或用于在无线通信系统100上通信的任何其它适当设备。无线终端102可以经由局域对等(P2P)网络(例如,ad hoc网络)彼此直接通信。对等通信可以通过在无线终端102之间直接传送信号来实现;因此,信号不需要经过基站(例如,基站104)。对等网络可以提供短距离、高数据速率通信(例如,在家庭、办公室等类型的环境内)。

此外,系统100可以支持广域网(WAN)。系统100可以在一个或多个扇区中包括基站104(例如,接入点)和/或任意数目的不同基站(未示出),其彼此和/或向一个或多个无线终端102对无线通信信号进行接收、发送、重复等。如本领域技术人员将认识到的,基站104可以包括发射机链和接收机链,其可以各自包括与信号发送和接收相关联的多个部件(例如,处理器、调制器、复用器、解调器、解复用器、天线、...)。无线终端102可以在经由系统100支持的广域基础设施网进行通信时向基站104发送信号和/或从基站104接收信号。

无线终端102之间的对等通信可以是同步的。例如,无线终端102可以利用公共时钟基准来同步执行不同功能。无线终端102可以从基站104(和/或提供较少功能的发射机(未示出))获得用于同步无线终端102的操作的定时信号。无线终端102可以从其它源(例如,GPS卫星)获得定时信号。根据示例,在对等网络中可以有意义地划分时间,以用于诸如对等设备发现、寻呼和业务的功能。此外,可以预期每个对等网络可以设置其自己的时间。

在发生对等网络中的通信之前,无线终端102(例如,对等设备)可以彼此检测和识别。在对等设备之间发生这种相互检测和识别的过程可以称为对等设备发现。系统100可以通过假设想要建立对等通信的对等设备定期地发送短消息并侦听其它设备的传输,来支持对等设备发现。

用于对等设备发现的传输可以在称为对等设备发现间隔的指定时间期间定期地发生,其中所述对等设备发现间隔的定时可以通过协议来预定且对无线终端102已知。可以将对等设备同步到公共时钟基准。例如,无线终端102可以对来自局部定位的基站104的少量广播信息进行解码。同步可以允许给定地理位置中的对等设备识别每个发现间隔的开始和结束。

局域对等网络和广域网可以共享公共无线频谱以实现通信;因此,可以共享带宽以用于将由不同类型的网络传送数据。例如,对等网络和广域网均可以在许可频谱上进行通信。然而,对等通信不需要采用广域网基础设施。

现在参照图2,示出了在对等网络中的无线终端之间同步通信的系统200。系统200包括直接与基本上任意数目的不同无线终端(例如,不同无线终端1204、...、不同无线终端X 206,其中X可以是任意整数)进行通信的无线终端202。尽管下面提供了关于无线终端202的更多细节,但是应当认识到这些示例可以类似地适用于不同无线终端204-206。

无线终端202还可以包括同步器208,其使无线终端202和不同无线终端204-206之间的定时一致。同步器208可以根据公共时钟基准来得到其定时。不同无线终端204-206的相似同步器(未示出)可以根据相同的公共时钟基准得到其各自的定时。此外,同步器208可以利用预定协议来估计公共时钟基准,以便识别在与公共时钟基准相关联的时间(例如,当前时间)将实现的功能类型。因此,例如,同步器208和不同无线终端204-206的相似同步器(未示出)可以确定根据公共时钟基准识别的时间段可以用于对等设备发现、寻呼或业务之一。即使无线终端202-206没有彼此直接通信,所识别的时间段对于同步器208和不同无线终端204-206的相似同步器(未示出)也将是基本相同或相似的。

同步器208采用的公共时钟基准可以是来自无线终端202和不同无线终端204-206附近的基站(未示出)的广播信息。另一公共时钟基准可以包括GPS卫星信号。例如,所述广播信息可以是信标、PN(伪随机)序列信号、导频信号或其它广播信号。此外,可以定期地从该基站接收广播信号。此外,同步器208可以根据广播信号确定定时信息。举例而言,无线终端202和不同无线终端204-206可以接收并同步到相同广播信号,并且从而具有对时间的共同理解。可以采用公共时间概念来根据由空口协议定义的预定模式来将时间线划分为用于每种类型的功能(例如,对等设备发现、寻呼、业务)的不同时段。

此外,无线终端202可以包括对等设备发现通信器210,其在如同步器208确定的对等设备发现间隔期间实现对等设备发现。对等设备发现通信器210还可以包括信号广播器212和对等设备检测器214。信号广播器212可以在对等设备发现间隔的第一部分中向不同无线终端204-206发送消息,该消息使不同无线终端204-206能够检测并识别无线终端202。此外,在对等设备发现间隔的第二部分中,对等设备检测器214可以接收从不同无线终端204-206发送的消息;对等设备检测器214可以对接收的消息进行分析,以检测并识别该消息所对应的不同无线终端204-206。在一些实施例中,对等设备发现间隔的第一和第二部分可以在时间上不重叠。此外,可以在对等设备发现间隔的第一和第二部分之间保留发送/接收切换保护时间。

举例而言,无线终端202可以进入包括不同无线终端1204和不同无线终端X 206的对等网络。当进入该网络时,同步器208可以确定与对等通信相关联的定时(例如,基于接收的公共时钟基准)。此外,在被划分用于对等设备发现的时间,信号广播器212可以向范围内的不同无线终端(例如,不同无线终端204-206)广播信号。不同无线终端204-206可以利用该信号来检测无线终端202已经进入该网络和/或确定无线终端202的标识。此外,对等设备检测器214可以获得来自不同无线终端204-206的广播信号。对等设备检测器214可以对获得的信号进行分析,以检测不同无线终端204-206和/或识别不同无线终端204-206。

由对等设备发现通信器210实现的对等设备发现可以是被动的。此外,对等设备发现可以是对称的;因此,无线终端202可以检测并识别不同无线终端1204,并且不同无线终端1204可以检测并识别无线终端202。然而,能够预期第一无线终端可以检测并识别第二无线终端,但是第二无线终端不可以检测并识别第一无线终端。此外,所定义的用于对等设备发现的时间间隔可能比对等设备发现间隔之间的时间短很多。此外,在检测和识别之后,可以但是不必在无线终端202和不同无线终端204-206之间实现进一步的通信(例如,寻呼、业务)。

参照图3,示出了由在对等环境内通信的同步对等设备采用的示例定时图300。定时图300可以利用用于对等设备发现的间隔以及用于不同功能(例如,寻呼和传送业务)的间隔来划分。如上所述,可以基于公共时钟基准来使对等设备彼此同步;因此,对等设备可以具有公共定时图概念300。示出了对等设备发现间隔302。每个对等设备发现间隔302可以具有持续时间T0。对等设备发现间隔302可以专用于检测和识别对等设备。此外,对等设备发现间隔302之间的时间可以是T1。在相邻对等设备发现间隔302之间的T1期间可以包括任意数目的寻呼和/或业务间隔。终端可以在T1间隔期间,例如当终端在对等设备发现间隔中没有找到任何对等设备或没有找到任何感兴趣的对等设备时,可以转换到休眠模式(例如,用于节省功率)。

被分配用于对等设备发现的时间量可以是总时间的一小部分。例如,对等设备发现间隔之间的时间(T1)可以大于被分配用于每个对等设备发现间隔302的时间(T0)至少5倍。根据另一例子,T1与T0之比可以是10、50、100、200、300等。根据另一例子,对等设备发现间隔302可以具有类似于2ms的持续时间T0(例如,约10ms、50ms、...)。通过另一示例,对等设备发现间隔之间的时间T1可以类似于几秒或1分钟。因为没有在传送寻呼和/或业务的对等设备可以在每个对等设备发现间隔302之间的时间T1期间休眠,所以分配总时间的一小部分用于对等设备发现提供了对功率的有效利用。

参照图4,示出了对等设备发现间隔的示例定时图400。对等设备发现间隔可以包括多个可能的传输时间,在该传输时间期间无线终端可以广播信号。例如,对等设备发现间隔可以包括N个符号(例如,OFDM符号),其中N可以是任意整数。此外,每个符号可以持续10μs,并且N可以是50、100、200等;然而,本主题权利要求不局限于此。对等网络内的每个对等设备可以采用一个或多个符号进行发送;对等设备可以侦听剩余符号以检测和/或识别范围内的其它对等设备。根据一个例子,对等设备可以在第一时间在第一符号上发送并在第二时间在第二符号上发送,其中第一时间和第二时间可以连续或者可以不连续。

根据一个例子,对等设备发现间隔可以包括200个符号。在一个或多个实施例中,这200个符号可以由终端用于发送广播信号。在其它实施例中,每个其它符号可以用于传输(例如,100个符号可以用于传输)。在对等设备发现间隔之前,想要进行对等通信的每个无线终端可以选择一个或多个传输符号(例如,根据上述例子从全部100个传输符号中选出)。在所选择的符号时间期间,无线终端向不同无线终端(例如,对等设备)发送消息。该消息可以包括所选择的传输符号之一中的一个音调。此外,在对等设备发现间隔中的剩余符号时间的至少一部分期间,无线终端侦听并对不同无线终端的传输进行解码。因为对等通信可以运用半双工模式,其中无线终端可以在特定时间发送或接收数据,所以无线终端可以在10%的传输时间内进行发送并且在剩余90%的时间内进行接收。通过另一例子,无线终端可以在30%的时间内进行发送并在70%的时间内进行接收。根据示例,无线终端可以基于(例如,根据接收的信标导出的)标识符和/或时间概念来确定用于发送的传输时间和/或波形(例如,在所选择的传输符号中发送的频率音调)。时间概念实际上是随时间变化的变量。所有无线终端可以得到相同的时间概念。例如,无线终端可以从来自基站的广播(例如,信标)信号中获得随时间变化的变量。该随时间变化的变量可以是在广播信号中发送的某个变量。例如,该变量可以是某个时间计数器或系统时间,其随时间而变化。在本文中,时间概念是指时间计数器。希望时间计数器随着对等设备发现间隔而变化。通过另一例子,无线终端可以采用伪随机数生成器来选择传输时间和/或波形,其中该伪随机数生成器的种子可以是无线终端的标识符和来自基站的广播信号所提供的当前计数器值。当时间计数器变化时,所选择的传输符号时间和/或波形也会随着对等设备发现间隔而变化。

现在参照图5,示出了在对等网络上实现同步通信的系统500。系统500包括无线终端202,其可以经由对等网络与不同无线终端(例如,对等设备)进行通信。无线终端202可以包括同步器208,其调整各种功能(例如,对等设备发现、寻呼、业务)的执行。同步器208可以获得并分析公共时钟基准以确定有意义的时间概念。此外,不同无线终端可以获得并分析公共时钟基准以产生相同时间概念;因此,局部区域内的对等设备可以与(例如,来自同一基站的)同一公共时钟基准同步。因此,对等设备在没有彼此直接通信的情况下得到相同定时(同步的定时)。例如,公共时钟基准可以是由无线终端202和对等设备的范围内的基站发送的信标信号。此外,无线终端202可以包括对等设备发现通信器210,对等设备发现通信器210进一步包括信号广播器212和对等设备检测器214。

对等设备发现通信器210还可以包括信号生成器502,其产生将由信号广播器212发送的消息。根据一个例子,信号生成器502可以确定对等设备发现间隔内的传输时间和/或将被发送的波形。信号生成器502可以根据(例如,与无线终端202对应的)标识符(ID)和(例如,根据公共时钟基准确定的)时间来产生消息的传输时间和/或波形。根据一个例子,由信号生成器502产生的消息可以是信标信号,其可以提供功率效率;因此,信号生成器502可以实现在选择的OFDM符号上发送特定音调。能够预期可以发送一个以上的信标信号。此外,由于保密问题,可以放入安全保护以减少对无线终端202的ID的不期望的分发。

根据另一例子,信号生成器502可以为信号广播器212提供与无线终端202相关联的ID,其中可以将该ID广播到对等设备。获得该ID的对等设备可以通过利用所接收的ID来检测和识别无线终端202。例如,无线终端202的ID可以是M比特哈希函数的输出,其中该M比特哈希函数的输入是无线终端202的纯文本名称和由基站广播信号(例如,公共时钟基准、信标、...)提供的当前计数器值。例如,该计数器值可以在当前对等设备发现间隔期间是恒定的,并且可以被所有对等设备解码。此外,哈希函数可以由协议来预先指定并对对等设备已知。

举例而言,对等设备检测器214可以维护与无线终端202相关联的伙伴对等设备的纯文本名称的列表。此外,在对特定ID进行解码之后,对等设备检测器214可以使用当前计数器值对其纯文本伙伴名称进行哈希运算。如果至少一个输出ID匹配已解码ID,则对等设备检测器214可以推断存在相对应的伙伴对等设备。如果没有发现匹配或有多个匹配,则对等设备检测器214不能关于存在任何伙伴对等设备做出判断。此外,每个对等设备可以改变ID生成哈希函数的输出的比特数目,在前记为M,以便确保最终发现该对等设备。对等设备维护在当前时间存在的已检测的不同无线终端的列表。该列表可以包括所有不同无线终端,或者可以包括在无线终端202或正在使用无线终端202的用户的预定义的伙伴列表中的无线终端。因为一些不同无线终端可能消失(例如,因为相应的用户离开)或者因为其它不同无线终端可能出现(例如,因为相应的用户走近),该列表随着时间而演变。对等设备可以向列表添加新的不同无线终端或者从列表中删除消失的不同无线终端。在实施例中,对等设备被动地维护该列表。在该情况中,第一对等设备可以检测存在第二对等设备,并且在没有通知第二对等设备的情况下将该第二对等设备保存在其列表中。因此,第二对等设备可能不知道第一对等设备已经将第二对等设备保存在列表中。对称地,根据无线信道和干扰条件,第二对等设备也可以检测到存在第一对等设备,并且在没有通知第一对等设备的情况下,将该第一对等设备保存在其列表中。在另一实施例中,在第一对等设备检测到存在第二对等设备之后,第一对等设备主动地发送信号以通知第二对等设备,使得第二对等设备现在知道第一对等设备已经将第二对等设备保存在列表中,即使第一对等设备尚且没有数据业务要与第二对等设备通信。第一对等设备可以选择地决定是否发送信号。例如,第一对等设备可以仅向预定义的伙伴列表中的另一对等设备发送信号。

无线终端202还可以包括寻呼器504和业务通信器506。基于同步器208产生的同步的时间概念,寻呼器504和业务通信器506可以在用于这种功能的各自分配的时间期间经由对等网络发送和/或接收信号。当检测并识别到对等设备时,寻呼器504使无线终端202能够发起与对等设备的通信。此外,在分配的业务间隔期间,无线终端202和对等设备可以通过运用业务通信器506来发送和/或接收业务。

无线终端202还可以包括状态转变器508,为了提供功率节省,状态转变器508可以使无线终端202能够在与除对等设备发现之外的功能(例如,寻呼、业务)相关联的时间间隔期间进入休眠状态,其中在所述时间间隔期间无线终端202没有涉及所述功能。此外,状态转变器508在对等设备发现间隔期间将无线终端202(例如,从休眠状态)切换到打开状态,以使无线终端202能够发现对等设备和/或被对等设备发现。

此外,无线终端202可以包括存储器510和处理器512。存储器510可以保存与无线终端202相关联的标识符。此外,存储器510可以包括可以由对等设备检测器214参考的伙伴对等设备列表。此外,存储器510可以保存与以下操作相关的指令:与不同无线终端同步用于不同功能的时间间隔,建立公共时间段用于局部区域中的对等设备发现(例如,基于从基站获得的信息),识别对等设备发现间隔内用于广播与无线终端相关的信号的位置,生成用于传输到不同无线终端的信号,检测和/或识别范围内的不同无线终端,等等。此外,处理器512可以执行本文描述的指令。

参照图6,示出了与在对等设备发现间隔期间的传输相关联的示例时间-频率坐标方格600。x轴表示时间并且可以包括N个符号(例如,其中N可以是任意整数),y轴表示频率并且可以包括M个音调(例如,其中M可以是任意整数)。根据一个例子,无线终端可以选择特定符号(例如,传输时间)用于传输(例如,基于无线终端或正在使用该无线终端的用户的标识符和/或时间计数器)。此外,可以确定与所选择的符号相对应的特定音调(例如,基于标识符和/或时间)。因此,如通过阴影所示,坐标方格600内的x和y坐标(例如,(x1,y1))可以提供信息(例如,当被接收到该信号的对等设备估计时)。通过发送单个符号,无线终端运用的字母表可以是log2(M·N)。根据另一例子,无线终端可以采用一个以上的符号用于在对等设备发现间隔期间的传输。根据该例子,可以在不同时间发送音调(例如,信标)。举例而言,如果利用坐标(x1,y1)和(x2,y2)来发送两个信标,则x1与x2不同,以减少同时发送这两个信标。

现在参照图7,示出了能够运用可逆函数用于生成对等设备发现信号的系统700,其中利用可逆函数允许从对等网络中的接收信号中解译出标识符。系统700包括无线终端202,其经由对等网络与不同无线终端进行通信。无线终端202可以包括同步器208、对等设备发现通信器210和存储器510。

对等设备发现通信器210(和不同无线终端的相似对等设备发现通信器)可以利用可逆函数用于对在对等环境中传送的信号进行编码和/或估计。因此,无线终端202和不同无线终端可以遵守某个函数(例如,哈希函数),使得能够在一个对等设备发现间隔中或在一系列对等设备发现间隔上确定这些无线终端的唯一标识符。信号生成器502可以运用可逆函数,以基于无线终端202的标识符和时间计数器来产生对等设备发现信号,并且可以将该信号提供给对等网络内的不同无线终端(例如,经由广播)。通过利用可逆函数,检测到由无线终端202发送的对等设备发现信号的不同无线终端可以对标识符(WT ID)进行解译。例如,可逆函数可以是线性函数或非线性函数。此外,信号广播器212可以发送由信号生成器502产生的对等设备发现信号。

信号生成器502可以包括解码序列链接器702,其基于固定的和预定的规则(例如,可逆函数)来链接连续的对等设备发现间隔中的信号格式。根据一个例子,标识符(WT ID)可以包括32个比特或更多;然而,在具有200个符号和50个音调的对等设备发现间隔中传送的信标信号提供10比特。因此,编码序列链接器702可以使得能够通过经由在一个以上的对等设备发现间隔中发送的信号提供标识符的多个部分来传送标识符。编码序列链接器702利用可逆函数以使得能够在R个对等设备发现间隔上识别标识符,其中R可以是任意整数(例如,小于3、3、小于20、...)。例如,编码序列链接器702可以使得能够在第一对等设备发现间隔期间发送第一信标、在第二对等设备发现间隔期间发送第二信标等等,其中可以根据可逆函数来链接信标。

此外,对等设备检测器214可以包括信号检测器704、解码序列链接器706和标识符确定器708。信号检测器704可以在对等设备发现间隔期间获得在对等网络上传送的信号。例如,信号可以由不同无线终端(例如,其运用可逆函数来生成这些信号)来生成和/或可以对应于噪声或干扰。根据一个例子,信号检测器704可以识别与检测的信号相关的符号坐标对和相对应的音调。解码序列链接器706可以利用固定的和预定的规则来将来自连续对等设备发现间隔的信号链接起来。此外,解码序列链接器706可以利用对不同无线终端的编码序列链接器所运用的函数的了解,来识别来自彼此对应的不同对等设备发现间隔的信号序列。此外,标识符确定器708可以估计信号序列以确定在这些信号上编码的标识符。例如,可以根据标识符确定器708实现的分析来更新识别的不同无线终端的列表。

通过利用可逆函数,系统700能够识别对等网络中的不同无线终端,无论无线终端202是否先前已知与不同无线终端相关的标识符(并且类似地,无线终端202可以被不同无线终端识别)。对范围内的无线终端的这种认知可以增强对业务传输的调整和对多个对等链接之间的干扰的管理。

根据示例,可以从无线终端202的信号生成器502发送的信号中发现无线终端202的标识符(例如,在无线终端202的存储器510中保存的WTID)。同样,可以类似地(例如,通过无线终端202的对等设备检测器214)发现分别对应于对等网络中的不同无线终端的唯一标识符。此外,基于所确定的标识符,对等设备检测器(例如,对等设备检测器214)可以识别另一无线终端作为对等设备。例如,可以利用固定的和预定的规则(例如,通过无线终端的编码序列链接器)将在连续对等设备发现间隔中发送的信号格式彼此链接,其中该规则可以在对等网络中适用。在特定对等设备发现间隔期间,多个无线终端可以发送其签名信号。然而,一个对等设备发现间隔中的签名信号不能唯一地识别发送无线终端(例如,无线终端202、不同无线终端)。因此,发送无线终端可以构成由该单个发送无线终端在连续对等设备发现间隔上发送的签名信号序列,以便恢复发送无线终端的标识符。此外,固定的和预定的规则有助于接收无线终端(例如,无线终端202、不同无线终端)构成一个签名信号序列,以便构造发送无线终端的标识符。

当使用信标信号时可以运用基本上任何固定的和预定的规则。根据一个例子,来自一个发送无线终端的签名信号可以在连续间隔中具有相同的所选择OFDM符号的位置。发送无线终端可以选择跳过用于传输的时间间隔的子集,使得该发送无线终端能够监视那些时间间隔并检验其它发送无线终端是否正在那些时间间隔中发送签名信号。在另一例子中,来自一个发送无线终端的签名信号在连续时间间隔中具有相同的所选择音调的位置。所选择符号的位置可以是发送无线终端的标识符的函数。在另一例子中,在两个连续时间间隔中可以分别在所选择符号x1的音调y1和所选择符号x2的音调y2上发送来自一个发送无线终端的签名信号;根据该例子,所述规则可以是y2=x1或x2=y1。应当理解,可以按照模的方式来定义上式,其中模是预定常量。通常,链接函数表示x1、y1、x2、y2必须满足的约束,即g(x1,y1,x2,y2)=0。

参照图8,示出了对利用可逆函数生成的对等设备发现信号的链接序列的估计的示例图形描绘。时间-频率资源800表示在第一对等设备发现间隔Ti期间生成和/或获得的信号(例如,信标),并且时间-频率资源802表示在第二对等设备发现间隔Ti+1期间生成和/或获得的信号。此外,第一对等设备发现间隔Ti可以是第二对等设备发现间隔Ti+1之前的对等设备发现间隔。时间-频率资源800-802可以与图6的时间-频率资源600相似。此外,然而应当认识到,所要求保护的主题内容不局限于这些例子。

根据所描绘的例子,可逆函数可以基于所选择的符号(例如,x轴)提供与标识符相关的信息。此外,可以通过所选择的音调(例如,y轴)来提供用于链接连续对等设备发现间隔中的信号的信息。例如,可逆函数可以假设yi+1=xi。举例而言,可以在第一对等设备发现间隔Ti期间利用坐标对(xi,yi)来发送信号。所选择的符号xi可以提供与标识符的一部分相关联的信息,而剩余部分可以包括在后续信号中,其中这些后续信号可以链接在序列中。为了确定下一个对等设备发现间隔Ti+1内的包括在该序列中的信号,识别具有等于xi的所选择音调坐标yi+1的信号。此外,尽管未示出,在随后的对等设备发现间隔Ti+2期间,yi+2=xi+1等等。尽管在每个对等设备发现间隔期间示出了一个信号,但是能够预期在每个这种间隔期间可以发送和/或接收任意数目的信号。此外,应当认识到,在不同对等设备发现间隔之间链接信标信号的任何不同方式旨在落入所附权利要求的范围内。此外,可以对来自任意数目的连续对等设备发现间隔的信号进行链接,以传送标识符(例如,2、3、4、...)。

参照图9,示出了对用于对等设备发现的直接信号传送编码方案所采用的资源的示例图形描绘。资源900可以包括N个符号和M个音调,其中N和M可以是基本上任意整数。例如,资源900可以是64乘以64;然而,所要求保护的主题内容不局限于此。此外,资源900可以与特定对等设备发现间隔相关联,并且基本上相似资源可以与下一个对等设备发现间隔相关联,等等。无线终端可以利用资源900来将唯一的ID发送到不同无线终端,以及侦听来自不同无线终端的ID。

每个无线终端的完整ID可以长32比特。无线终端可以通过添加另外13比特来根据该唯一的、原始的32比特ID构成45比特已编码ID。从一个对等设备发现间隔到下一个对等设备发现间隔,这13比特会改变(例如,随时间改变),而该32ID比特会保持恒定。例如,能够预期,这13比特的一部分可以随时间改变,而这13比特的剩余部分可以是恒定的;然而,所要求保护的主题内容不局限于此。例如,可以将10个与时间无关的奇偶校验比特以及另外3个与时间相关的奇偶校验比特附加到该ID。此外,可以基本上以任意方式生成这13比特。已编码ID(例如,组合了32比特和13比特)可以记为x。举例而言,45比特已编码ID可以是七个6比特符号x1、x2、x3、x4、x5、x6和x7以及一个时间相关3比特符号x8(t)的级联(例如,x(t)=[x1x2x3x4x5x6x7x8(t)])。

此外,对等设备发现时隙的资源900可以划分为K个段,其中K可以是基本上任意整数;因此,资源900可以分为K个子组。根据资源900是64乘以64时间-频率坐标方格(例如,64个音调和64个符号)的例子,资源900可以被划分为8个段,其中每个段包括8个符号(例如,和分别对应于该8个符号的64个音调)。尽管下面讨论了前述例子,但是应当认识到,所要求保护的主题内容不局限于此。在时间t的对等设备发现会话期间,无线终端可以选择8个段中的一个,以在该段期间根据x8(t)(例如,其包括3个组选择器比特,这3个组选择器比特唯一的确定资源900的8个段中的一个以用于已编码ID传输)来进行发送。因此,无线终端在这8个段中的一个期间进行发送,并且在时间t在剩余7个段期间侦听特定对等设备发现间隔(例如,由于对等设备发现的半双工特性)。此外,因为x8(t)是时间相关的,所以无线终端运用的段随时间而变化(例如,无线终端可以在第一对等设备发现间隔期间经由第一段并且在第二对等设备发现间隔期间经由第二段进行发送,其中第一段和第二段可以是相同的或不同的)。对于所选择的段中的每个列,无线终端可以在与相关联的6比特符号相对应的时间-频率点上以最大功率进行发送;因此,使用段的第j列来传递已编码ID x中的符号xj(例如,其中j在1和7之间)。此外,每个段中的第8个符号可以是保留(例如,未使用的)符号,以便在段之间提供间隙(如阴影所示)(例如,与保留符号相关联的所有音调可以是未使用的);然而,根据另一例子,能够预期每个段内的任意其它符号可以是保留符号,可以保留每个段中的多个符号(例如,可以保留奇数或偶数个符号)等等。

根据示例,无线终端可能不是彼此完全同步。例如,定时估计可能在无线终端之间不同(例如,基于公共时钟基准)。根据另一例子,与不同无线终端相关联的定时的偏移可以由在不同基站内进行同步的不同无线终端而产生,并且从而具有些许不同的时间概念。例如,该偏移可能小于与符号相关联的时间量;然而,所要求保护的主题内容不局限于此。因此,可以运用保留符号(或者多个保留符号)来解决该定时不确定性。

现在参照图10,示出了根据对等设备发现期间的直接信号传送编码方案从对等设备发现间隔中(例如,从图9的资源900中)选择的用于传输标识符的示例段1000。段1000可以包括8个符号和64个音调;然而,所要求保护的主题内容不局限于此。此外,段1000可以包括保留符号1002(例如,或多个保留符号(未示出))。此外,可以针对如图所示的段1000中的每7个非保留符号发送一个音调。因为可以针对每个符号选择64个音调中的一个音调,所以在每个符号上传输单个音调可以提供6比特信息(例如,分别与已编码IDx中的符号xj相关)。因此,可以使用七个6比特符号来传递45比特已编码ID的前42个比特。此外,可以经由从一组段中(例如,从资源900中包括的8个段中)选择的段1000来传递后3个比特。在段1000期间进行发送的无线终端还可以在除与对等设备发现间隔相关联的段1000之外的剩余段期间(例如,在资源900的剩余七个段期间)侦听由不同无线终端传送的ID。此外,从该组段中对段1000的选择会随时间变化(例如,在不同对等设备发现间隔期间,可以利用资源900中的不同段来发送ID)。

当获得和/或生成已编码ID时,可以实现直接信号传送编码,其中已编码ID可以包括32个ID比特和13个附加比特。能够预期已编码ID或其一部分可以是随时间变化的(例如,特定无线终端的已编码ID的一部分会在对等设备发现间隔之间不同)。此外,已编码ID可以分为两部分:已编码ID的第一部分可以支持从一组段中选择用于传送数据的段(例如,资源可以被划分到该组段中),以及已编码ID的第二部分可以与将在所选择的段期间生成和/或发送的七个6比特符号相关。根据一个例子,与所选择的段相关的已编码ID的第一部分可以以信号方式传送3比特,而第二部分可以以信号方式传送剩余42比特。此外,能够预期,可以在所选择的段内以任意方式用信号传送42比特(例如,运用相移键控(PSK)、差分相移键控(DPSK)、正交相移键控(QPSK)、正交幅度调制(QAM)、...),并且所要求保护的主题内容不局限于经由采用如本文所描述的七个6比特符号来用信号传送。

可以如下进行解码。对于每个段和每个列,可以识别具有最多能量的音调。因此,在该段中针对七个符号识别的音调可以级联并且可以附加段符号x8(t),以构成对x(t)的估计。此后,可以利用添加到32个ID比特的13比特的子集或全部来执行奇偶校验。如果奇偶校验通过,则可以去除13个添加的比特,并且可以将剩余32比特ID包括在对等设备发现列表中。然而,如果一个或多个奇偶校验失败,则可以丢弃该ID。接下来,针对每个段和每个列,可以识别具有第二大能量的音调。可以如上所述级联该第二最高能量音调,并且如果通过所有奇偶校验,则可以将相对应的32比特ID添加到对等设备发现列表中。同样,可以执行更多次(例如,第三最高能量、第四最高能量、...)。在每个发现时隙中将错误的ID添加到对等设备发现列表中的概率可以大约为2-10x[次数]。根据另一例子,能够预期从普通发送无线终端获得的功率可以具有某种相关性;所以,音调功率不应显示出显著的变化,否则会丢弃一个符号上与其它符号上的音调变化较大的音调(例如,如果确定这些音调具有最高能量、第二高能量、...)。

该对等设备发现技术可以首先识别最强对等设备,而随后由于段选择的随机特性,可以识别更远的对等设备。此外,可以改善解码性能,同时增加了计算复杂度。针对每个列,可以识别具有最多能量的两个音调,而不是仅识别最大能量音调。这样可以创建27个潜在的ID。对于每个ID,可以校验奇偶比特。如果所有奇偶校验通过,则可以将该ID添加到对等设备发现列表中,并且如果有任意失败,则可以丢弃该ID。平均而言,这种改善的解码技术会相比前述解码技术发现更多的对等设备。运用这种解码技术添加错误ID的概率约为2-3

参照图11,示出了在对等设备发现期间在无线终端之间的定时偏移的图形表示。根据所描绘的示图,无线终端A和无线终端B可以显示出定时偏移(例如,在无线终端A的定时1100和无线终端B的定时1102之间)。例如,定时偏移可能由于每个无线终端与不同基站同步或者由每个无线终端基于公共时钟基准产生的定时估计的变化;然而,所要求保护的主题内容不局限于此。如图所示,可以将无线终端A的定时1100移位在无线终端的定时1102之前;然而,应当认识到,定时1100可能落在后面和/或可能与定时1102同步。

在对等设备发现间隔期间,无线终端可以运用任意数目的保留(例如,未使用)符号。保留符号可以是零讯号(null)。如上所述,对等设备发现间隔可以划分为任意数目个(例如,8个)段,并且每个段可以包括保留符号;但是应当认识到,每个段可以包括多个保留符号。在所描绘的例子中,偶数编号的符号可以是保留符号(如阴影所示),并且可以利用奇数编号的符号来传送与标识符相关的信息。

根据示出的例子,无线终端A可以在符号3(例如,如通过定时1100阐明的无线终端A的时间概念所指定的)上发送信号(例如,音调),并且无线终端B可以接收该信号。因为传输的信号的音调位置和相对应的时间索引(例如,符号)使接收无线终端能够对发送无线终端的ID进行解码,所以无线终端的时间概念之间的差异会严重地影响性能。通过另一示例,无线终端B可以确定与所传输的信号相关联的时间索引。因为在无线终端A的定时1100和无线终端B的定时1102之间可能存在偏移(例如,无线终端A可能具有与无线终端B不同的时间概念),所以无线终端B可以在符号2期间接收部分信号并且在符号3期间接收剩余信号,但是在该所示例子中符号2可以是保留符号。因为在该保留符号期间可以在无线终端B处部分地接收信号,所以无线终端B可以确定发送无线终端(例如,无线终端A)具有与无线终端B不同的定时。此外,无线终端B可以通过调整定时1102来从这种定时差异中恢复,以减小定时1100和定时1102之间的这种未对准。例如,无线终端B可以将在符号2和3上接收的信号量化为与符号3相关联。此外,在执行量化时,无线终端B可以运用奇偶校验以估计是否应当将接收的信号量化到符号3(或任何不同符号)。因此,利用保留符号可以减少与定时不确定相关联的负面影响,因为可以使用插入的空间来检测定时偏移和/或从定时偏移中恢复。

根据该例子,其中段可以包括一个保留符号和七个用于传送ID信息的符号,保留符号可以使得能够在接收无线终端处调整七个符号的定时。因此,如果接收无线终端在该段的保留符号期间检测到接收符号开始和/或结束,则可以对这七个符号进行移位以从符号偏移中恢复。因此,接收无线终端可以运用保留符号来确定合适的移位,以应用于得到的信号以便消除偏移,从而允许在对等设备发现期间对发送无线终端的标识符进行解译。此外,应当认识到,可以运用保留符号与非保留符号的任何比例,并且保留符号可以使得能够检测定时偏移和/或从定时偏移中恢复。

参照图12,示出了图形示例1200,其描绘在多个对等设备发现间隔上传送部分标识符以便传送用于对等设备发现的完整标识符。根据示例,无线终端的标识符(例如,具有或不具有奇偶校验比特)可以大于与对等设备发现间隔资源相关联的可用空间量,因此可以利用一个以上的对等设备发现间隔来以信号方式传送标识符的各个部分(例如,任意数目的部分标识符)。根据该示例,可以保留32比特用于传送无线终端的标识符,但是该标识符可能大于32比特(例如,完整标识符的所有比特不能放入有限的空间)。根据另一个例子,无线终端可以具有多个标识符(例如,与无线终端用户的工作生活(work life)、社会生活(social life)、虚拟生活(virtual life)等相关)。此外,可以一次一个的发送这多个标识符,对这多个标识符进行哈希处理以形成公共标识符等,因此可以传送大于由对等设备发现间隔资源提供的可用空间大小的多个比特。

接收无线终端可以根据所示出的例子在两个对等设备发现间隔期间观测部分标识符;然而,应当认识到所要求保护的主题内容不局限于可以在任意数目的对等设备发现间隔上传送标识符。在对等设备发现间隔A 1202期间,可以获得任意数目的部分标识符(例如,A1、A2、A3、...)。此外,在对等设备发现间隔B 1204期间,可以获得任意数目的部分标识符(例如,B1、B2、B3、...)。对等设备发现间隔A 1202和对等设备发现间隔1204可以在时间上彼此邻近。能够预期,在对等设备发现间隔A 1202中观测到的部分标识符的数目可以与在对等设备发现间隔B 1204中观测到的部分标识符的数目相同和/或不同。然而,运用传统技术来在接收无线终端处确定在对等设备发现间隔A 1202期间传送的第一部分标识符与在对等设备发现间隔B 1204期间传送的第二部分标识符之间的一致性会是非常困难的。例如,部分标识符A1和部分标识符B3可以是相关的,使得公共源(例如,发送无线终端)生成和/或以信号方式传送该信息;然而,在运用传统技术时,接收无线终端可能不能解译它们之间的这种相关性(例如,关联)。根据示例,可以运用参照图8给出的编码来链接对等设备发现间隔之间的信息;然而,所要求保护的主题内容不局限于此。

参照图13,示出了对用于在多个对等设备发现间隔上传送标识符的链接方案1300的另一示例图形描绘。标识符可以包括N个比特,其中N可以是任意整数。例如,标识符可以是已编码ID、原始ID、多个标识符、与多个标识符相关联的哈希值等。可以在一系列任意数目的对等设备发现间隔(例如,对等设备发现间隔A、对等设备发现间隔B、对等设备发现间隔C、...)上以信号方式传送该N比特标识符来作为部分标识符序列,使得接收无线终端能够获得、重组和/或解码该部分标识符序列从而确定标识符。

根据该例子,可以在第一对等设备发现间隔(例如,对等设备发现间隔A)中以信号方式传送标识符的前10个比特;尽管该例子描述在每个对等设备发现间隔期间以信号方式传送10个比特,但是能够预期在每个对等设备发现间隔期间可以传送大于10的任意数目的比特。此外,例如,可以运用任何类型的映射方案来传送在对等设备发现间隔A(以及任何后续对等设备发现间隔)期间传输的10个比特。在下一个(例如,第二个)对等设备发现间隔(例如,对等设备发现间隔B)期间,可以以信号方式传送标识符的10个比特。在第二对等设备发现间隔期间以信号方式传送的10个比特的子集可以与在第一对等设备发现间隔期间以信号方式传送的前10个比特的一部分重叠。例如,在第二对等设备发现间隔期间以信号方式传送的前5个比特可以与在第一对等设备发现间隔期间以信号方式传送的后5个比特匹配;然而,能够预期可以在对等设备发现间隔之间运用任意重叠量。例如,在生成部分标识符时可以运用任意类型的线性约束(例如,部分标识符的任意数目的比特可以与先前和/或后续部分标识符中的比特重叠),以使接收无线终端能够理解如何对在多个对等设备发现间隔上传送的部分标识符进行重组以重新生成标识符。此后,在第三对等设备发现间隔(例如,对等设备发现间隔C)期间,可以以信号方式传送标识符的10个比特,其中这10个比特的子集(例如,5个比特)可以与对等设备发现间隔B中包括的比特重叠。另外,此后可以在任意数目的对等设备发现间隔中以信号方式传送任意数目的部分标识符,以便能够传送标识符中包括的比特组。

参照图14,示出了运用bloom滤波器来验证是否在对等设备发现期间传送标识符的方案1400的示例图形描绘。可以运用bloom滤波器来确定是否发送了标识符。根据示例,发送无线终端可以将其标识符输入到bloom滤波器中,以产生相应的序列(例如,1和0的序列);具体地,可以在接收无线终端处检验序列中1的位置,以便以某种概率确定发送了该标识符。具体地,可以运用bloom滤波器以便能够链接部分标识符。

如图所示,在对等设备发现间隔A期间可以传送第一部分标识符,并且在下一个对等设备发现间隔B期间可以传送第二部分标识符;同样,在后续对等设备发现间隔期间可以传送任意数目的附加部分标识符。例如,第一部分标识符可以包括10个比特,并且第二部分标识符可以包括另外10个比特;但是能够预期,部分标识符可以包括任意数目的比特,因为所要求保护的主题内容不局限于此。部分标识符可以重叠,使得第一部分标识符的X个比特将与第二部分标识符的X个比特匹配;然而,能够预期部分标识符可以不重叠(例如,第一部分标识符包括标识符的前10个比特,而第二部分标识符包括标识符的接下来10个比特)。

此外,在每个对等设备发现间隔期间可以与部分标识符一起以信号方式传送bloom滤波器信息。例如,检验B可以与在对等设备发现间隔B期间传送的部分标识符(例如,数据B)以及在前面的对等设备发现间隔期间传送的部分标识符(例如,在对等设备发现间隔A期间以信号方式传送的数据A)相关。因此,基于检验B中的bloom滤波器信息可以验证这些部分标识符的组合。所以,如果在接收无线终端处组合并通过bloom滤波器估计两个不匹配的部分标识符,则得到的导出信息可以与检验B中包括的bloom滤波器信息不同(例如,以便确定这种部分标识符的组合是不正确的)。此外,应当认识到,可以利用特定bloom滤波器检验来估计任意数目的部分标识符的组合,以链接在不同对等设备发现间隔期间以信号方式传送的部分标识符,并且所要求保护的主题内容不局限于如上所述检验两个部分标识符。根据另一示例,与所示出的利用每个部分标识符不同,可以利用部分标识符的子集来以信号方式传送bloom滤波器检验信息。

下面提供了附加例子;然而,能够预期所要求保护的主题内容不局限于此。可以将对等设备发现时隙分为两部分。在第一部分中,无线终端可以通过在相对应的时间-频率块上进行发送来通告它们的ID的一部分。在对等设备发现时隙之间,在通告的ID部分中可以有一定量的重叠。通过查看若干对等设备发现时隙,无线终端可以将它们的对等设备的ID部分链接起来。时隙的第二部分可以具有能够有助于链接过程的特定结构。此外,ID部分的重叠片段也可以有助于该链接过程。

每个无线终端可以采用其32比特ID并在末尾附加8比特奇偶校验以构成40比特已编码ID。该已编码ID可以记为x=[x0,...,x39]。在发现时隙t中,每个无线终端可以构成其ID的10比特段:yt=[x5tmod39,x5t+1mod39,...,x5t+9mod39]。应当注意到,段yt和yt+1重叠5比特,并且yt以t为周期。表示为zt=[x5tmod39,x5t+1mod39,...,x5t+14mod39]。

可以将对等设备发现时隙分为两部分:A和B。第一部分可以进一步细分为两个片段:A1和A2。在片段A1和A2中,可以有64x16=1024个时间-频率块。片段A1的时间-频率块可以与整数{0,...,1023}的随机置换相关联。片段A2的时间-频率块可以与整数{0,...,1023}的不同随机置换相关联。

在发现时隙t的A部分期间,每个无线终端在片段A1中发送一次,并且在片段A2中发送一次,在时间-频率块上的每一次对应于其10比特ID段yt。应当注意的是,这些块倾向于是不同的(具有高可能性)。

发现时隙的B部分可以包括64x32=2048个时间-频率块。每个15比特ID段可以与该2048个块的随机5个块构成的子集相关联。应当注意的是,可以有2048选5个这种子集和220个可能的20比特ID段。在发现时隙t的B部分期间,每个无线终端可以在与其15比特ID段zt相关联的子集的5个时间-频率块上进行发送。

为了对其对等设备的ID进行解码,接收无线终端可以生成在其侦听的第一发现时隙的A1片段或A2片段中观测的所有10比特ID段的列表。此外,该接收无线终端可以针对第二发现时隙构成相似的列表。然后,该接收无线终端可以试图链接10比特ID的这两个集合。例如,该接收无线终端可以寻找成对的ID,其中第一ID的后5个比特与第二ID的前5个比特匹配。一旦定位到匹配,可以在第二发现窗口的B片段中的相关联的5个时间-频率块上执行检验。如果所有5个块都是以足够大的功率接收的,则可以将相关联的15比特ID写入到级联列表中。如果该B片段中的5个块中的一个或多个不是以足够大的功率接收的,则可以丢弃该15比特ID。对于由于无线终端在该符号时间期间同时进行发送而不能检验的那些块而言,无线终端可以假设传输发生。一旦已经链接两个ID段,无线终端可以进行到第三发现时隙。无线终端可以创建在A1片段或A2片段中观测的所有10比特ID段的列表。对于最后5比特与级联列表中的一个ID的最后5比特重叠的那些10比特ID段而言,移动设备检验当前发现时隙的B片段。如果与15比特ID相关联的5个时间-频率块全部被检验,则无线终端可以通过添加当前段的后5个比特来将15比特ID扩展到20比特ID。然后,无线终端可以进行到第四窗口,等等,直到级联列表中的ID长为40比特(或者与在其连接中采用的已编码ID相关联的任何长度)。这时,无线终端可以检验级联列表中的40比特ID的8个奇偶校验比特。如果所有奇偶校验通过,则可以将32比特ID写入到对等设备发现列表中。然后,发现过程可以再次重新开始,以便将附加ID添加到对等设备发现列表中,等等。

参照图15,示出了对滑动窗口和bloom滤波器的示例图形描绘1500。在每个片段A1和A2中可以包括与10比特ID段yt相对应的时间-频带块。此外,在片段B中可以包括与15比特ID段zt相对应的时间-频带块的子集。A部分可以称为发现时隙的滑动窗口分量,因为对等设备使用该部分来通告它们的ID中与滑动窗口相对应的段。B部分可以称为bloom滤波器分量,因为这可以实现bloom滤波器操作。滑动窗口和bloom滤波器均可以用于链接10比特ID段。可以使用8个奇偶校验比特来减小报错率。可以在A1和A2两部分中重复滑动窗口分量的原因是因为频率分集。当信道是频率选择性的并且特定对等设备的一个滑动窗口传输的音调降到零(null)时,会浪费全部七个发现时隙(为了获悉该对等设备的完整ID的目的)。

参照图16-23,示出了与在对等网络内执行对等设备发现相关的方法。虽然,出于简化说明的目的,将这些方法示出并描述为一系列动作,但是应该明白和理解,这些方法并不限于这些动作的顺序,因为根据一个或多个实施例,一些动作可以按不同的顺序发生和/或与本文示出并描述的其它动作同时发生。例如,本领域技术人员应该明白并理解,方法可以替换地表示为如在状态图中的一系列相关状态或事件。另外,根据一个或多个实施例,实现一种方法并不要求所有示出的动作。

参照图16,示出了一种有助于在对等设备发现期间直接以信号方式传送标识符的方法1600。在1602处,可以生成随时间变化的已编码标识符。例如,发送无线终端可以与32比特标识符相关联。此外,可以将随时间变化的额外13比特(或者其中一部分可以随时间变化)添加到原始32比特标识符以产生45比特已编码标识符。然而,能够预期所要求保护的主题内容不局限于此。此外,例如,可以将已编码标识符划分为七个6比特组和一个3比特组。在1604处,可以基于已编码标识符的一部分来选择对等设备发现资源内的多个段中的一个段。根据示例,资源可以是64个音调乘以64个符号。此外,可以将资源划分为8个段,其中每个段可以包括8个符号(例如,和相应的音调)。例如,可以基于已编码标识符中包括的3比特组来选择该段;因而,所选择的段可以以信号方式发送已编码标识符的3比特组。此外,所选择的段可以在不同的对等设备发现间隔期间变化;因此,在对等设备发现间隔期间同时进行发送的冲突无线终端可以在后续对等设备发现间隔期间获得彼此的标识符(例如,由于对等设备发现过程的半双工属性,其中无线终端在特定时间进行发送或者进行接收)。在1606处,可以在所选择的段期间以信号方式传送已编码标识符的剩余部分。例如,在所选择的段期间可以发送七个音调,其中可以在该段内的不同符号上以信号方式发送每个音调;因此,每个音调可以提供标识符中的6个比特,从而能够传送已编码标识符的七个6比特组。此外,该段中的第8个符号可以是保留(例如,未使用的)符号。

现在参照图17,示出了一种有助于对在对等设备发现期间直接以信号方式传送的标识符进行解码的方法1700。在1702处,可以在对等设备发现资源的一个段内的符号上接收音调。例如,该段可以包括8个符号,并且该资源可以包括8个段;但是,所要求保护的主题内容不局限于此。预期能够在每个符号上获得任意数目的音调。在1704处,可以基于功率电平相似度来对每个符号中的特定音调进行相关,以确定从共同的发送无线终端获得的音调序列。例如,该段中的每个符号上的最高能量的音调可以构成序列。此外,因为来自共同源的能量等级趋向于是相似的(例如,因为发送无线终端以基本相似的能量等级发送音调),所以可以从序列中去除具有显著不同的能量等级的任何音调。预期可以从该段内构成任意数目的序列,并且这些序列中的每一个可以产生不同对等设备标识符。在1706处,可以基于该段和该音调序列来确定发送无线终端的标识符。例如,可以对对等设备发现资源内的一组段中的该段的标识进行解码,以产生标识符的一部分。此外,可以对该序列中的音调进行解码以获得该标识符的剩余部分。此外,可以执行对已编码标识符的奇偶校验,并且如果成功则可以将与已编码标识符相对应的原始标识符添加到对等设备列表中。

参照图18,示出了一种有助于在对等设备发现间隔内并入保留符号的方法1800。在1802处,可以同步对等网络内的定时。例如,发送无线终端和接收无线终端可以对操作进行同步(例如,基于公共时钟基准);然而,在这些无线终端的定时之间可能存在偏移。在1804处,可以在如通过(例如,发送无线终端的)定时所指定的对等设备发现间隔期间发送标识符的至少一部分。例如,可以通过在其中包括随时间变化的比特来生成已编码标识符。此外,能够预期可以以任何方式(例如,利用直接信号传送、传送具有重叠的部分标识符和/或运用bloom滤波器信息的部分标识符、...)来用信号传送标识符。在1806处,可以保留对等设备发现间隔内的至少一个符号,以便能够识别定时偏移并从定时偏移中恢复。保留符号可以是未使用的(例如,零)符号。根据示例,可以保留段内的一个符号(例如,每个段中的最后一个符号)用于直接信号传送。

参照图19,示出了一种有助于在对等设备发现内移动定时以减小偏移的方法1900。在1902处,可以同步对等网络内的定时。在1904处,可以在对等设备发现间隔期间在与至少一个标识符相关的符号上接收音调。在1906处,在获得保留符号上的音调之后,可以识别定时偏移。例如,如果在与保留符号相关联的时间期间获得音调,则可以识别出偏移。在1908处,可以校正定时偏移。例如,可以对所接收音调的定时进行移位,以便将接收的零讯号(null)与关联于保留符号的期望零讯号对准。

参照图20,示出了一种有助于在多个对等设备发现间隔上以信号方式传送标识符的方法2000。在2002处,可以在第一对等设备发现间隔期间发送第一部分标识符。例如,未编码标识符可以包括32比特,并且可以将8个奇偶校验比特添加到该32比特以构成40比特已编码标识符。然而,能够预期结合所要求保护的主题内容可以采用任意大小的标识符(或多个标识符)。此外,第一部分标识符可以包括标识符(例如,已编码标识符、...)的前Y个比特,其中Y可以是任意整数。根据一个例子,Y可以是10;但是,所要求保护的主题内容不局限于此。在2004处,可以在第二对等设备发现间隔期间发送第二部分标识符,其中X比特在第一部分标识符和第二部分标识符内重叠。此外,X可以是小于或等于Y的任意整数。此外,第二部分标识符可以包括共计Y个比特(例如,10比特),其中该Y个比特包括X个(例如,5个)重叠的比特。此外,重叠比特可以使接收无线终端能够将第一部分标识符和第二部分标识符链接起来。

现在参照图21,示出了一种有助于基于重叠信息来链接在不同对等设备发现间隔期间获得的部分标识符的方法2100。在2102处,可以在第一对等设备发现间隔期间接收第一组部分标识符。在2104处,可以在第二对等设备发现间隔期间接收第二组部分标识符。例如,第一对等设备发现间隔和第二对等设备发现间隔可以是相邻的对等设备发现间隔。此外,能够预期,在第一组和第二组中可以包括任意数目的部分标识符,并且这些组可以具有相等或不同的大小。在2106处,可以基于比特重叠来匹配第一组和第二组中的部分标识符。例如,第一组中的部分标识符的最后X比特可以匹配第二组中的部分标识符的前X比特;因此,可以将这些部分标识符彼此链接。此外,可以类似地接收任意数目的额外部分标识符组并将其进行链接以产生完整的对等设备标识符。

现在参照图22,示出了一种有助于在以信号方式传送用于对等设备发现的部分标识符时运用bloom滤波器的方法2200。在2202处,可以在第一对等设备发现间隔期间发送第一部分标识符。在2204处,可以在第二对等设备发现间隔期间发送第二部分标识符。例如,第一部分标识符可以包括标识符的前Y个比特,第二部分标识符可以包括标识符的接下来Y个比特,等等,其中Y可以是任意整数(例如,Y可以是10)。根据另一示例,这些部分标识符可以相互重叠(例如,X比特可以在在相邻对等设备发现间隔期间传送的部分标识符之间重叠)。在2206处,可以基于第一部分标识符和第二部分标识符的组合来生成bloom滤波器信息。例如,可以将部分标识符的组合输入到bloom滤波器以产生bloom滤波器信息。在2208处,可以发送bloom滤波器信息,以使对等设备能够链接第一部分标识符和第二部分标识符。例如,可以在第二对等设备发现间隔期间与第二部分标识符一起发送bloom滤波器信息;然而,所要求保护的主题内容不局限于此。此外,可以针对附加部分标识符重复上述过程,以传送完整的标识符。

参照图23,示出了一种有助于运用bloom滤波器来匹配部分标识符的方法2300。在2302处,可以在第一对等设备发现间隔期间接收第一组部分标识符。在2304处,可以在第二对等设备发现间隔期间接收第二组部分标识符。预期在第一对等设备发现间隔和/或第二对等设备发现间隔期间可以接收任意数目的部分标识符。在2306处,可以基于接收的bloom滤波器信息来链接第一组和第二组中的部分标识符。例如,在接收无线终端处可以组合第一组中的标识符和第二组中的标识符并输入到bloom滤波器,并且可以将得到的信息与所接收的bloom滤波器信息进行比较。如果得到的信息存在于所接收的bloom滤波器信息内,则识别出这些标识符之间的链接。

应当注意,根据本文描述的一个或多个方面,可以针对在对等环境中发现和识别对等设备进行推断。如本文所使用的,术语“推理”或“推断”一般是指根据如通过事件和/或数据捕获的一组观测结果来推论或推理系统、环境和/或用户的状态的过程。例如,可以利用推断来识别具体上下文或动作,或者可以生成状态概率分布。推断可以是概率性的——即,对关注的状态概率分布的计算是基于数据和事件因素的。推断也可以指用于根据一组事件和/或数据组成更高级事件的技术。该推断导致根据一组所观测的事件和/或所存储的事件数据构成新的事件或动作,无论这些事件是否以紧密的时间邻近度相关,以及这些事件和数据是否来自一个或几个事件和数据源。

根据一个例子,上面给出的一个或多个方法可以包括关于同步用于经由对等网络进行通信的对等设备发现间隔做出推断。根据另一例子,可以做出与根据对等网络中的广播信号来估计公共时间概念相关的推断。应当认识到,前述例子本质上是示例性的,而非旨在限制可以进行推断的数目或结合本文描述的各种实施例和/或方法进行这种推断的方式。

图24描绘了根据各个方面实现的示例通信系统2400,其包括多个小区:小区I 2402、小区M 2404。应当注意,如小区边界区域2468所指示的一样,相邻小区2402、2404有小部分重叠。系统2400的每个小区2402、2404包括三个扇区。根据各个方面,没有分为多个扇区的小区(N=1),具有两个扇区的小区(N=2),以及具有三个以上扇区的小区(N>3)也是可能的。小区2402包括第一扇区(扇区I 2410)、第二扇区(扇区II 2412)、和第三扇区(扇区III 2414)。每个扇区2410、2412、2414分别具有两个扇区边界区域;每个边界区域在两个相邻扇区之间共享。

小区I 2402包括基站(BS)、基站I 2406和每个扇区2410、2412、2414中的多个端节点(EN)(例如,无线终端)。扇区I 2410包括EN(1)2436和EN(X)2438;扇区II 2412包括EN(1’)2444和EN(X’)2446;扇区III 2414包括EN(1”)2452和EN(X”)2454。同样,小区M 2404包括基站M 2408和每个扇区2422、2424、2426中的多个端节点(EN)。扇区I 2422包括EN(1)2436’和EN(X)2438’;扇区II 2424包括EN(1’)2444’和EN(X’)2446’;扇区III 2426包括EN(1”)2452’和EN(X”)2454’。

系统2400还包括网络节点2460,其分别经由网络链路2462、2464耦合到BS I 2406和BS M 2408。网络节点2460还经由网络链路2466耦合到其它网络节点,例如其它基站、AAA服务器节点、中间节点、路由器等,以及耦合到因特网。网络链路2462、2464、2466可以是例如光纤电缆。每个端节点,例如EN(1)2436,可以是包括发射机以及接收机的无线终端。无线终端,例如EN(1)2436,可以移动经过系统2400并且可以经由无线链路与该EN当前所在的小区中的基站进行通信。无线终端(WT),例如EN(1)2436,可以经由基站例如BS 2406和/或网络节点2460与对等节点例如系统2400内或系统2400外的其它WT进行通信。WT例如EN(1)2436可以是移动通信设备,比如蜂窝电话、具有无线调制解调器的个人数字助理等。

通信系统2400也可以支持局域对等通信。例如,可以采用公共频谱用于局域对等通信以及经由广域网(例如,蜂窝基础设施网络)的通信。无线终端可以经由诸如对等网络2470、2472和2474的局域对等网络来与其它对等设备通信。尽管描绘了3个对等网络2470-2474,但是应当认识到可以支持任意数目、大小、形状等的对等网络。例如,每个对等网络2470-2474可以支持在无线终端之间直接传送信号。此外,每个对等网络2470-2474可以包括相似地理区域内(例如,相互的范围内)的无线终端。例如,EN(1)2436可以通过局域对等网络2470与EN(X)2438进行通信。然而,应当认识到,无线终端不需要与包括在公共对等网络中的相同扇区和/或小区相关联。此外,对等网络可以重叠(例如,EN(X’)2446可以利用对等网络2472和2474)。此外,对等网络可能不支持某些无线终端。在广域网和/或对等网重叠的情况下,无线终端可以(例如,同时或顺序地)运用广域网和/或对等网。此外,无线终端可以无缝地切换或同时利用这些网络。因此,发送和/或接收无线终端可以选择性地运用一个或多个网络来优化通信。

图25示出了根据各个方面的示例基站2500。基站2500实现音调子集分配序列,其中为小区的各个不同扇区类型生成不同的音调子集分配序列。基站2500可以用作图24的系统2400的基站2406、2408中的任意一个基站。基站2500包括通过总线2509耦合在一起的接收机2502、发射机2504、处理器2506(例如CPU)、输入/输出接口2508和存储器2510,其中各个元件2502、2504、2506、2508和2510可以通过总线2509交换数据和信息。

耦合到接收机2502的扇区化天线2503用于从基站的小区内的每个扇区的无线终端传输接收数据和其它信号,例如信道报告。耦合到发射机2504的扇区化天线2505用于向基站的小区的每个扇区内的无线终端2600(见图26)发送数据和其它信号,例如控制信号、导频信号、信标信号等。在各个方面中,基站2500可以运用多个接收机2502和多个发射机2504,例如用于每个扇区的单个接收机2502和用于每个扇区的单个发射机2504。例如,处理器2506可以是通用中央处理单元(CPU)。处理器2506基于在存储器2510中存储的一个或多个例程2518的指示来控制基站2500的操作并实现这些方法。I/O接口2508提供到其它网络节点的连接,从而将BS 2500连接到其它基站、接入路由器、AAA服务器节点等其它网络和因特网。存储器2510包括例程2518和数据/信息2520。

数据/信息2520包括数据2536、音调子集分配序列信息2538和无线终端(WT)数据/信息2544,其中信息2538包括下行链路带符号时间信息2540和下行链路音调信息2542,数据/信息2544包括多个WT信息集:WT 1信息2546和WT N信息2560。每个WT信息集,例如WT 1信息2546,包括数据2548、终端ID 2550、扇区ID 2552、上行链路信道信息2554、下行链路信道信息2556和模式信息2558。

例程2518包括通信例程2522和基站控制例程2524。基站控制例程2524包括调度器模块2526和信令例程2528,其中信令例程2528包括用于带符号周期的音调子集分配例程2530,用于例如非带符号周期的其它符号周期的下行链路音调分配跳跃例程2532,和信标例程2534。

数据2536包括要发送的数据和来自WT的接收数据,其中将要发送的数据发送到发射机2504的编码器2514以用于在发送到WT之前进行编码,其中接收数据在接收之后已经通过接收机2502的解码器2512进行处理。下行链路带符号时间信息2540包括帧同步结构信息,比如超时隙、信标时隙和极大时隙(ultraslot)结构信息,以及指示指定符号周期是否为带符号周期的信息,并且如果是,则还包括带符号周期的索引以及带符号是否是用于对由基站所使用的音调子集分配序列进行截断的复位点。下行链路音调信息2542包括如下信息,该信息包括分配给基站2500的载波频率,音调的数目和频率和将要分配给带符号周期的一组音调子集,以及其它小区和扇区专用值,例如斜率、斜率索引和扇区类型。

数据2548可以包括WT 12600从对等节点接收的数据,WT 12600希望发送到对等节点的数据以及下行链路信道质量报告反馈信息。终端ID2550是基站2500分配的ID,其标识WT 12600。扇区ID 2552包括标识WT 12600工作的扇区的信息。例如,扇区ID 2552可以用于确定扇区类型。上行链路信道信息2554包括标识由调度器2526分配给WT 12600使用的信道段的信息,例如数据的上行链路业务信道段,请求、功率控制、时间控制等的专用上行链路控制信道。分配给WT 12600的每个上行链路信道包括一个或多个逻辑音调,每个逻辑音调跟随上行链路跳跃序列。下行链路信道信息2556包括指示由调度器2526分配给WT 12600用于携带数据和/或信息的信道段的信息,例如,用户数据的下行链路业务信道段。分配给WT 12600的每个下行链路信道包括一个或多个逻辑音调,每个逻辑音调之后是下行链路跳跃序列。模式信息2558包括标识WT 12600的工作状态的信息,例如休眠、保持、打开。

通信例程2522控制基站2500执行各种通信操作并实现多种通信协议。基站控制例程2524用于控制基站2500执行基本的基站功能任务,例如,信号生成和接收、调度以及实现一些方面的方法步骤,包括在带符号周期期间使用音调子集分配序列向无线终端发送信号。

信令例程2528控制具有解码器2512的接收机2502和具有编码器2514的发射机2504的操作。信令例程2528负责控制发射数据2536以及控制信息的生成。音调子集分配例程2530使用该方面的方法并使用包括下行链路带符号时间信息2540和扇区ID 2552的数据/信息2520来构建音调子集以便在带符号周期中使用。下行链路音调子集分配序列对于小区中的每个扇区类型是不同的并且对于相邻小区也是不同的。WT 2600根据下行链路音调子集分配序列来在带符号周期中接收信号;基站2500使用相同的下行链路音调子集分配序列以便生成所发送的信号。其它下行链路音调分配跳跃例程2532使用包括下行链路音调信息2542和下行链路信道信息2556的信息来为除带符号周期之外的其它符号周期构建下行链路音调跳跃序列。下行链路数据音调跳跃序列在小区的多个扇区之间是同步的。信标例程2534控制信标信号的传输,例如,为同步目的可以使用集中在一个或几个音调上的具有较高信号功率的信号,例如,为了对下行链路信号的帧定时结构进行同步并从而相对极大时隙边界对音调子集分配序列进行同步。

图26示出了一种示例无线终端(例如,端节点、移动设备...)2600,其可以用作任意一个无线终端(例如,端节点、移动设备...),例如,图24所示的系统2400的EN(1)2436。无线终端2600实现音调子集分配序列。无线终端2600包括通过总线2610耦合在一起的具有解码器2612的接收机2602,具有编码器2614的发射机2604,处理器2606和存储器2608,其中各个元件2602、2604、2606、2608可以通过总线2610来交换数据和信息。将用于从基站2500(和/或不同无线终端)接收信号的天线2603耦合到接收机2602。将用于向基站2500(和/或不同无线终端)发送信号的天线2605耦合到发射机2604。

处理器2606(例如,CPU)控制无线终端2600的操作并通过执行例程2620和使用存储器2608中的数据/信息2622来实现方法。

数据/信息2622包括用户数据2634、用户信息2636、音调子集分配序列信息2650以及伙伴对等设备列表。用户数据2634可以包括目标为对等节点的数据,其中在由发射机2604传输到基站2500之前将该数据路由到编码器2614以进行编码,用户数据2634还包括从基站2500接收的数据,其中该数据已经由接收机2602中的解码器2612进行处理。用户信息2636包括上行链路信道信息2638、下行链路信道信息2640、终端ID信息2642、基站ID信息2644、扇区ID信息2646和模式信息2648。上行链路信道信息2638包括标识上行链路信道段的信息,其中基站2500已经将该上行链路信道段分配给无线终端2600以便在向基站2500进行发送时使用。上行链路信道可以包括上行链路业务信道、专用上行链路控制信道,例如请求信道、功率控制信道和定时控制信道。每个上行链路信道包括一个或多个逻辑音调,每个逻辑音调跟随上行链路音调跳跃序列。上行链路跳跃序列在小区的每个扇区类型之间以及在相邻小区之间是不同的。下行链路信道信息2640包括标识下行链路信道段的信息,其中基站2500已经将该下行链路信道段分配给WT 2600以便在BS 2500向WT 2600发送数据/信息时使用。下行链路信道可以包括下行链路业务信道和分配信道,每个下行链路信道包括一个或多个逻辑音调,每个逻辑音调跟随下行链路跳跃序列,其中该下行链路跳跃序列在小区的每个扇区之间是同步的。

用户信息2636还包括终端ID信息2642、基站ID信息2644和扇区ID信息2646,其中终端ID信息2642是由基站2500分配的标识,基站ID信息2644标识WT已经与其建立通信的具体基站2500,扇区ID信息2646标识WT 2600当前所在小区的具体扇区。基站ID 2644提供小区斜率值,扇区ID信息2646提供扇区索引类型;小区斜率值和扇区索引类型可以用于导出音调跳跃序列。也包括在用户信息2636中的模式信息2648,其标识WT 2600是处于休眠模式、保持模式还是打开模式。

音调子集分配序列信息2650包括下行链路带符号时间信息2652和下行链路音调信息2654。下行链路带符号时间信息2652包括诸如超时隙、信标时隙的帧同步结构信息和极大时隙结构信息以及指定给定符号周期是否是带符号周期的信息,并且如果是,则还包括带符号周期的索引以及该带符号是否是由基站用于对音调子集分配序列进行截断的复位点。下行链路音调信息2654包括如下信息,该信息包括分配给基站2500的载波频率,音调的数目和频率以及分配给带符号周期的一组音调子集以及其它小区和扇区专用值,比如斜率、斜率索引和扇区类型。

例程2620包括通信例程2624、无线终端控制例程2626、同步例程2628、寻呼消息生成/广播例程2630以及寻呼消息检测例程2632。通信例程2624控制WT 2600使用的各种通信协议。例如,通信例程2624可以支持经由广域网(例如,与基站2500)和/或局域对等网(例如,直接与不同接入终端)进行通信。通过另一例子,通信例程2624可以支持接收广播信号(例如,从基站2500接收)。无线终端控制例程2626控制基本的无线终端2600功能,包括对接收机2602和发射机2604的控制。同步例程2628控制将无线终端2600同步到接收的信号(例如,从基站2500接收的信号)。还可以将对等网络内的对等设备同步到该信号。例如,所接收的信号可以是信标、PN(伪随机)序列信号、导频信号等。此外,可以定期地获得该信号,并且可以利用同样对对等设备已知的(例如,与同步例程2628相关联的)协议来识别与不同功能(例如,对等设备发现、寻呼、业务)相对应的间隔。寻呼消息生成/广播例程2630控制创建用于在识别的对等设备寻呼间隔期间传输的消息。可以基于协议(例如,与寻呼消息生成/广播例程2630相关联的协议)来选择与该消息相关联的符号和/或音调。此外,寻呼消息生成/广播例程2630可以控制向对等网络内的对等设备发送消息。寻呼消息检测例程2632基于在识别的对等设备寻呼间隔期间接收的消息来控制检测和识别对等设备。此外,寻呼消息检测例程2632可以至少部分地基于在伙伴对等设备列表2656中保存的信息来识别对等设备。

参照图27,示出了一种能够在对等设备发现期间直接以信号方式传送标识符的系统2700。例如,系统2700可以至少部分地位于无线终端内。应当注意,将系统2700表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统2700包括能够联合操作的电子部件的逻辑组2702。例如,逻辑组2702可以包括用于生成随时间变化的已编码标识符的电子部件2704。此外,逻辑组2702可以包括用于基于已编码标识符的一部分来选择用于传输的对等设备发现资源内的多个段中的一个段的电子部件2706。此外,逻辑组2702可以包括用于在所选择的段期间以信号方式传送已编码标识符的剩余部分的电子部件2708。此外,系统2700可以包括存储器2710,其保存用于执行与电子部件2704、2706和2708相关的功能的指令。尽管将电子部件2704、2706和2708示出为在存储器2710外部,但是应当理解电子部件2704、2706和2708中的一个或多个可以位于存储器2710内。

参照图28,示出了一种能够对在对等设备发现期间直接以信号方式传送的标识符进行解码的系统2800。例如,系统2800可以至少部分地位于无线终端内。应当注意,将系统2800表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统2800包括能够联合操作的电子部件的逻辑组2802。例如,逻辑组2802可以包括用于在对等设备发现资源的一个段中的符号上接收音调的电子部件2804。此外,逻辑组2802可以包括用于基于功率电平相似度来对每个符号中的特定音调进行相关以确定从共同的发送无线终端获得的音调序列的电子部件2806。此外,逻辑组2802可以包括用于基于该段和该音调序列来确定发送无线终端的标识符的电子部件2808。此外,系统2800可以包括存储器2810,其保存用于执行与电子部件2804、2806和2808相关的功能的指令。尽管将电子部件2804、2806和2808示出为在存储器2810外部,但是应当理解电子部件2804、2806和2808中的一个或多个可以位于存储器2810内。

参照图29,示出了一种能够在对等设备发现间隔内并入保留符号的系统2900。例如,系统2900可以至少部分地位于无线终端内。应当注意,将系统2900表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统2900包括能够联合操作的电子部件的逻辑组2902。例如,逻辑组2902可以包括用于同步对等网络内的定时的电子部件2904。此外,逻辑组2902可以包括用于在如通过定时所指定的对等设备发现间隔期间发送标识符的至少一部分的电子部件2906。此外,逻辑组2902可以包括用于保留对等设备发现间隔内的至少一个符号以便能够识别定时偏移并从定时偏移中恢复的电子部件2908。此外,系统2900可以包括存储器2910,其保存用于执行与电子部件2904、2906和2908相关的功能的指令。尽管将电子部件2904、2906和2908示出为在存储器2910外部,但是应当理解电子部件2904、2906和2908中的一个或多个可以位于存储器2910内。

参照图30,示出了一种能够移位定时以减小对等设备发现内的偏移的系统3000。例如,系统3000可以至少部分地位于无线终端内。应当注意,将系统3000表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统3000包括能够联合操作的电子部件的逻辑组3002。例如,逻辑组3002可以包括用于同步对等网络内的定时的电子部件3004。此外,逻辑组3002可以包括用于在对等设备发现间隔期间在与至少一个标识符相关的符号上接收音调的电子部件3006。此外,逻辑组3002可以包括用于在获得保留符号上的音调之后识别定时偏移的电子部件3008。逻辑组3002还可以包括用于校正定时偏移的电子部件3010。此外,系统3000可以包括存储器3012,其保存用于执行与电子部件3004、3006、3008和3010相关的功能的指令。尽管将电子部件3004、3006、3008和3010示出为在存储器3012外部,但是应当理解电子部件3004、3006、3008和3010中的一个或多个可以位于存储器3012内。

参照图31,示出了一种能够在多个对等设备发现间隔上以信号方式传送标识符的系统3100。例如,系统3100可以至少部分地位于无线终端内。应当注意,将系统3100表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统3100包括能够联合操作的电子部件的逻辑组3102。例如,逻辑组3102可以包括用于在对等设备发现间隔期间发送第一部分标识符的电子部件3104。此外,逻辑组3102可以包括用于在第二对等设备发现间隔期间发送第二部分标识符的电子部件3106,其中X比特在第一部分标识符和第二部分标识符内重叠。此外,系统3100可以包括存储器3108,其保存用于执行与电子部件3104和3106相关的功能的指令。尽管将电子部件3104和3106示出为在存储器3108外部,但是应当理解电子部件3104和3106中的一个或多个可以位于存储器3108内。

参照图32,示出了一种能够基于重叠信息来链接在不同对等设备发现间隔期间获得的部分标识符的系统3200。例如,系统3200可以至少部分地位于无线终端内。应当注意,将系统3200表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统3200包括能够联合操作的电子部件的逻辑组3202。例如,逻辑组3202可以包括用于在第一对等设备发现间隔期间接收第一组部分标识符的电子部件3204。此外,逻辑组3202可以包括用于在第二对等设备发现间隔期间接收第二组部分标识符的电子部件3206。此外,逻辑组3202可以包括用于基于比特重叠来匹配第一组和第二组中的部分标识符的电子部件3208。此外,系统3200可以包括存储器3210,其保存用于执行与电子部件3204、3206和3208相关的功能的指令。尽管将电子部件3204、3206和3208示出为在存储器3210外部,但是应当理解电子部件3204、3206和3208中的一个或多个可以位于存储器3210内。

参照图33,示出了一种能够在以信号方式传送用于对等设备发现的部分标识符时运用bloom滤波器的系统3300。例如,系统3300可以至少部分地位于无线终端内。应当注意,将系统3300表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统3300包括能够联合操作的电子部件的逻辑组3302。例如,逻辑组3302可以包括用于在第一对等设备发现间隔期间发送第一部分标识符的电子部件3304。此外,逻辑组3302可以包括用于在第二对等设备发现间隔期间发送第二部分标识符的电子部件3306。此外,逻辑组3302可以包括用于基于第一部分标识符和第二部分标识符的组合来生成bloom滤波器信息的电子部件3308。逻辑组3302还可以包括用于发送bloom滤波器信息以使对等设备能够链接第一部分标识符和第二部分标识符的电子部件3310。此外,系统3300可以包括存储器3312,其保存用于执行与电子部件3304、3306、3308和3310相关的功能的指令。尽管将电子部件3304、3306、3308和3310示出为在存储器3312外部,但是应当理解电子部件3304、3306、3308和3310中的一个或多个可以位于存储器3312内。

参照图34,示出了一种能够运用bloom滤波器以匹配部分标识符的系统3400。例如,系统3400可以至少部分地位于无线终端内。应当注意,将系统3400表示为包括功能块,其可以是对由处理器、软件或其组合(例如,固件)实现的功能进行表示的功能块。系统3400包括能够联合操作的电子部件的逻辑组3402。例如,逻辑组3402可以包括用于在第一对等设备发现间隔期间接收第一组部分标识符的电子部件3404。此外,逻辑组3402可以包括用于在第二对等设备发现间隔期间接收第二组部分标识符的电子部件3406。此外,逻辑组3402可以包括用于基于接收的bloom滤波器信息来链接第一组和第二组中的部分标识符的电子部件3408。此外,系统3400可以包括存储器3410,其保存用于执行与电子部件3404、3406和3408相关的功能的指令。尽管将电子部件3404、3406和3408示出为在存储器3410外部,但是应当理解电子部件3404、3406和3408中的一个或多个可以位于存储器3410内。

当实施例实现在软件、固件、中间件或微代码、程序代码或程序段中时,可以将它们存储在例如存储部件的机器可读介质中。代码段可以表示过程、函数、子程序、程序、例程、子例程、模块、软件包、类、或者指令、数据结构或编程语句的任意组合。通过传送和/或接收信息、数据、实参、形参或存储器内容,可以将代码段耦合到另一代码段或硬件电路。可以使用包括内存共享、消息传送、令牌传送、网络传输等的任何适当方式来传送、转发或发送信息、实参、形参、数据等。

对于软件实现,本文描述的技术可以利用执行本文描述的功能的模块(例如,过程、函数等)来实现。软件代码可以存储在存储器单元中并且由处理器来执行。存储器单元可以实现在处理器内部或处理器外部,其中在实现在处理器外部的情况中,该存储器单元可以经由本领域公知的各种方式通信性耦合到处理器。

上面所述内容包括一个或多个实施例的例子。当然,不可能为了描述前述实施例而描述部件或方法的每种能够想到的组合,但是本领域技术人员可以认识到各个实施例的很多其它组合和置换是可能的。此外,所描述的实施例旨在包括落入所附权利要求的精神和范围内的所有这些替换、修改和变体。此外,对于在具体说明或权利要求中所使用的词语“包含”,该词语意在表示包含性的,其与词语“包括”在权利要求中用作过渡词时的含义相同。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号