首页> 中国专利> 原油中含气率和含水率的双能χ射线测量方法

原油中含气率和含水率的双能χ射线测量方法

摘要

本发明涉及一种原油中含气率和含水率的双能χ射线测量方法,系利用χ光机产生的χ射线与物质作用原理,在油田生产中,油水气三相介质并存的条件下,测量输油管道中含水率和含气率指标。该测量方法依托于主要由三个大分系统组成的测量设备和一套专用软件,包括二种能量χ射线的产生分系统,一个或二套探测器构成的探测器分系统,以及一个总控和数据处理分系统组成,还包括准直器。专用软件中采用了特殊算法来求解含水率ω

著录项

  • 公开/公告号CN101261235A

    专利类型发明专利

  • 公开/公告日2008-09-10

    原文格式PDF

  • 申请/专利权人 罗平安;房宗良;贺江林;

    申请/专利号CN200810097203.1

  • 发明设计人 罗平安;房宗良;贺江林;

    申请日2008-05-06

  • 分类号G01N23/087;G06F19/00;H05G1/30;

  • 代理机构

  • 代理人

  • 地址 102208 北京市昌平区回龙观云趣园三区21号楼-2-502

  • 入库时间 2023-12-17 20:41:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-04-12

    未缴年费专利权终止 IPC(主分类):G01N23/087 专利号:ZL2008100972031 申请日:20080506 授权公告日:20101208

    专利权的终止

  • 2010-12-08

    授权

    授权

  • 2008-10-29

    实质审查的生效

    实质审查的生效

  • 2008-09-10

    公开

    公开

说明书

技术领域

本发明涉及石油测量技术领域,具体涉及原油含气含水率的测量系统,具体涉及一种利用χ光机产生的χ射线与物质作用原理,油田生产中、油水气三相介质并存的条件下测量输油管道中含水率和含气率指标的双能χ射线测量技术,属于国际专利分类G01N技术领域。

背景技术

原油作为最重要的能源之一,从油井开采出的原油,是油、水、天然气等多相介质组成的混合物。处理这种混合物首先要进行气液分离,剩下的油水混合液体经脱水处理后得到含水率很低的成品油进行外输或销售。在原油脱水处理等一系列生产活动中,需要及时准确地掌握原油含水率和含气率等情况,以便控制生产过程,保证生产出合格的成品原油。因此,原油含水率和含气率等指标是石化行业石油采集、冶炼及运输过程中一个重要参数。特别是许多老油田,目前主要采用注水采油工艺,采出原油的含水率普遍偏高。因此,对原油进行含水率和含气率的准确检测在原油生产、贸易中有着重要作用。

目前测量原油含水率主要有以下几种方法:人工蒸馏化验法、微波法(或射频法)、电容法、短波法、导热法、振动密度计法和γ射线法。1、微波法(如CN1112677)是根据电磁波与介电物质相互作用,其耗散与物质的大小及相对介电常数有关,油和水的介电常数不同导致被测对象所呈现的射频阻抗特性不同,当射频信号传到以油水混合物为介质的电容式射频传感器时,其负载阻抗随着混合介质的不同油水比而变化,即当原油含水率变化时,波参量随之变化,从而实现含水率测量;2、电容法(如:CN1186236)是根据油水的介电常数不同,反映到由极板构成的电容器的电容量不同,测量电容量的变化,就可以测量含水率的变化;3、短波法(如:CN2349574)是利用一个(后)探头向原油中发射3.579MHz的短波信号,把当前原油状态查清,间隔几秒钟后,在通过另一个(前)探头向原油中发射3.579MHz的短波信号,又取出油中含水的信号,然后取二次测得的差值,经处理后可得出瞬时含水率;4、导热法(如:CN1259671)利用液-液两相流体的热物理性质的差异,如导热、比热、粘度等,同时测量原油的含水率和油水流量;5、振动密度计法(如:CN1789969,CN2359692)利用液位测量元件测量储油罐(或分离器)内原油的液位,压力测量仪表测量储油罐(或分离器)中无原油部分的压力和底部承受的压力,最后通过经验公式算出;6、射线法(如:CN86105543A,CN2359692Y,CN1086602A,CN2383068Y)是根据γ射线穿过不同介质时,其衰减不同的原理工作的。除γ射线法以外的其它各种测量方法,都属接触式测量,由于原油腐蚀性较强,结垢、结蜡严重,致使仪表长期运行的可靠性差,尤其是这些仪表都无法消除含气对含水率测量带来的影响,而导致了比较大的测量误差。对此,专利CN2452022Y、CN2646704Y和CN2646705Y专门设计了不同的擦除器来传感器外面累积的杂质。另外,电容法、射频法和微波法测量的含水率变化与被测量之间是非线性关系,在某一含水率范围内有拐点,而原油是油水气混合体,其物理化学性质多变,所以除γ射线法外的上面几种测量方法在实际应用中,都不能很好地满足生产要求。

根据γ射线与物质相互作用规律而工作的原油含水分析仪与混合流体的宏观流态和化学性质无关,能够对复杂的原油进行含水率和含气率的测量,深受油田的欢迎。

发明专利CN86105543A公开了一种利用放射源(如109Cd,或243Am等)发出的单能γ射线,对二相油水混合体的体积含水率的测量原理。实用新型专利CN2359692Y公布了一种利用238Pu放射源对二相油水混合体的含水率进行测量的装置。发明专利CN1086602A公开了一种在三相油水气混合体中,测量原油中含气、含水率的自动测量仪;在测量管道的侧壁上沿径向中心线对称位置两侧分别固定有γ射线源和透射探测器;在与γ射线源和透射探测器所在中心线成夹角且沿测量管道轴向与之相距一定距离的中心线侧壁上固定有散射探测器;最后根据测量的结果,经过数据处理而得到体积含气率和体积含水率。文献[1]对其测量原理,从理论做了进一步的探讨。实用新型专利CN2383068Y对依据上述原理设计的装置,做了改进,增加了一个搅拌装置,使实际上从油井里出来的油水气混合均匀,以便更进一步满足理论假设条件,以便提高测量的精度。不管怎么说,这个理论模型取近似的地方太多,各个参数物理意义不明确,对压力、温度等变化参数的影响,没有考虑修正,这些最终还是影响了其使用的方法和测量精度。

另外,使用放射源产生的γ射线测量法,还有一个比较大的弱点,就是存在放射性安全问题,特别是在目前反恐形势比较严峻的时期,这个弱点更加突出。

目前市场上尚未发现应用双能χ射线法测量原油中含气率和含水率的原理和装置。

发明内容

本发明的目的,在于针对三相油、水、气混合体中,实时高精度测量原油中含气、含水率的需求,提供一种采用双能技术测量含气、含水率的原理和方法。

本发明的目的是通过以下技术方案实现的。

一种原油中含气率和含水率的双能χ射线测量方法,系利用χ光机产生的χ射线与物质作用原理,在油田生产中,油水气三相介质并存的条件下,测量输油管道中含水率和含气率指标。该测量方法依托于主要由三个大分系统组成的测量设备和一套专用软件,即:二种能量χ射线的产生分系统,一个或二套探测器构成的探测器分系统,以及一个总控和数据处理分系统组成;其它装置还包括准直器;所述的探测器分系统包括探测器、前置放大器或光电倍增管、信号成形、放大、采样保持、AD转换等单元;总的控制和数据处理分系统包括数据的传输、同步、显示、控制和报警等部分;所述的专用软件中采用了特殊的算法来求解含水率ω1和含气率ω3;ω1表示水所占的重量百分比即含水率,ω3表示天然气所占的重量百分比即含气率,ω2表示油所占的重量百分比ω2=1-ω13

在油水气三相状态下,该软件采用了如下的两个方程来求解含水率ω1和含气率ω3

(ω1(μ1(EH*)ρ1-μ2(EH*)ρ2)+ω3(μ3(EH*)ρ3-μ2(EH*)ρ2)+μ2(EH*)ρ2)·()

=ln(kHN0(EH*)N(x,EH*)-kHcHN0(EH*))---(13)

(ω1(μ1(EL*)ρ1-μ2(EL*)ρ2)+ω3(μ3(EL*)ρ3-μ2(EL*)ρ2)+μ2(EL*)ρ2)·()

=ln(kLN0(EL*)N(x,EL*)-kLcLN0(EL*))---(14)

上述方程中:EH*、EL*分别代表χ光机的高能和低能χ射线所对应的等效能量;ρ代表油管中油水气三相状态下的实际密度,ρ1代表实际油管里所对应的温度、压力等条件下纯水的密度,ρ2代表实际油管里所对应的温度、压力等条件下纯原油的密度,ρ3代表实际油管里所对应的温度、压力等条件下纯天然气的密度;μ1、μ2、μ3分别代表纯水、纯原油、纯天然气在对应的等效射线能量下的线性衰减系数;x代表油管里,测试系统测量空间的线性厚度;N0(E*)代表在对应的等效射线能量条件下,油管里没有任何物质存在时,测试系统所测量的计数;N0(x,E*)代表在对应的测量厚度、等效射线能量条件下,测试系统所测量的计数;k、c分别为修正系数,同μ1、μ2、μ3一起,可以通过预先测量指数衰减曲线求得。

在只考虑油水二相状态时,可以把测量系统的χ光机能量简化为单能,这时所述软件中采用了如下公式来求解含水率ω1

ω1=ln(kN0N(x)-kcN0)-(μ2ρ2)(μ1ρ1-μ2ρ2)---(9)

公式中:ρ代表油管中油水二相状态下的实际密度,ρ1代表实际油管里所对应的温度、压力等条件下纯水的密度,ρ2代表实际油管里所对应的温度、压力等条件下纯原油的密度;μ1、μ2分别代表纯水、纯原油在对应的等效射线能量下的线性衰减系数;x代表油管里,测试系统测量空间的线性厚度;N0代表在对应的等效射线能量条件下,油管里没有任何物质存在时,测试系统所测量的计数;N0(x)代表在对应的测量厚度、等效射线能量条件下,测试系统所测量的计数;k、c分别为修正系数,同μ1、μ2一起,可以通过预先测量指数衰减曲线求得。

设计χ光机系统时,将高、低能量之间满足的一定条件考虑进去,高能EH*与低能EL*的差别越大,测量精度越高;例如:EH*(1.5~3)EL*,简单一点,EH*=2EL*;所述高能χ光机的能量范围可取在10keV~1MeV之间。

该测量方法依托于真双能χ光机测量系统,其测量设备核心部件的安装方式,是在原油管道的水平直径一端装设χ射线产生分系统,包括真双能χ光机控制系统,连接准直器和准直器,准直器屏蔽室中设有位置基本重合的高能χ射线的靶点和低能χ射线的靶点;原油管道水平直径的另一端装设探测器分系统,包括探测器和屏蔽管,连接总控和数据处理分系统,包括相互连接的第一路信号成形、放大和采样保持单元、第一组探测器的高压电源、第一路AD转换单元、第一路控制单元和数据处理计算机。

该测量方法依托于二台单能χ光机产生高低能χ射线,其测量设备核心部件的安装方式,是由并行排列的高能χ光机的控制系统和低能χ光机的控制系统,分别连接高能χ光机的靶点和高能χ光机准直器和屏蔽室、以及低能χ光机靶点和低能χ光机的准直器和屏蔽室,所述两台单能χ光机,分别对应两组探测器分系统——第一组探测器和屏蔽管,第二组探测器和屏蔽管,形成两条平行的探测分路,两组探测器分系统分别连接各自的总控和数据处理分系统,即:一组连接第一路信号成形、放大和采样保持单元、第一组探测器的高压电源、第一路AD转换单元、第一路控制单元,另一组连接第二路信号成形、放大和采样保持单元、第二组探测器的高压电源、第二路AD转换单元、第二路控制单元;两组数据均分别传至数据处理计算机。

该测量方法依托于伪双能χ光机测量系统,其测量设备核心部件的安装方式,包括一台单能χ光机控制系统,对应旋转机构,能谱预硬化装置同旋转机构安装在一起,外罩准直器,与之对应安装第一组探测器和屏蔽管;χ光机的靶点、准直器、探测器和屏蔽管组成一套χ射线探测通路,连接第一路信号成形、放大和采样保持单元、第一组探测器的高压电源、第一路AD转换单元、第一路控制单元和数据处理计算机。

该测量方法依托于二台单能χ光机测量系统,其测量设备核心部件的安装方式,采用了二台单能χ光机和探测器的横向安装方式,是在原油管道的上下左右四个端点部位进行安装,在其左端和下端分别装载高能χ光机的控制系统和低能χ光机的控制系统,分别配合有高能χ光机的靶点、高能χ光机的准直器和屏蔽室,以及低能χ光机的靶点和低能χ光机的准直器和屏蔽室,高能χ光机的靶点、准直器、与原油管道右端安装的探测器和屏蔽管组成一套高能χ射线探测通路,低能χ光机的靶点、准直器与原油管道右端安装的探测器和屏蔽管组成一套低能χ射线探测通路;两套探测通路处于原油管道的同一个横截面上,以减少测量设备的长度;两套探测通路的夹角可以变化,理想状态是,夹角越小越好,在原油管道横截面上均匀性比较好时,其夹角可以大一些。

该测量方法依托于伪双能探测器,其测量设备核心部件的安装方式,包括一台单能χ光机控制系统,外罩准直器,与之对应在探测器前面安装能谱过滤片,第一组探测器和屏蔽管;χ光机的靶点、准直器、能谱过滤片、探测器和屏蔽管组成一套高能χ射线探测通路,连接第一路信号成形、放大和采样保持单元、第一组探测器的高压电源、第一路AD转换单元、第一路控制单元和数据处理计算机。同时χ光机的靶点、准直器、第二组探测器和第二组探测器的屏蔽管组成一套低能χ射线探测通路,连接第二路信号成形、放大和采样保持单元、第二组探测器的高压电源、第二路AD转换单元、第二路控制单元和数据处理计算机

如果χ光机的束流不太稳定,为了提高测量精度,可以加入一路亮度校正探测器。其特征在于:在每个χ光机的出口安装一路亮度校正探测器或;亮度校正探测器的位置在χ光机的出口,但最好不要遮挡用于测量的主束流。以亮度校正探测器为例说明其安装关系:χ光机的靶点、准直器和亮度校正探测器组成一套χ射线束流大小探测通路,连接第三路信号成形、放大和采样保持单元、第三路探测器的高压电源、第三路AD转换单元、第三路控制单元和计算机。

本发明双能χ射线测量技术,即利用χ光机产生的χ射线与物质作用原理,在油田生产中,油水气三相介质并存的条件下,测量输油管道中含水率和含气率指标。该系统克服了放射源带来的重大安全隐患,特别适用于油田生产中,自动在线计量系统。本发明理论模型的精度比较高,各种参数的物理意义比较明确,使用简单,还能考虑温度、压力等因素的影响,特别适用于油田生产中,自动在线计量系统。当利用X光机作为射线源时,可以免除丢失放射源的困扰,提高了辐射防护的安全系数,从根本上杜绝了恐怖分子获取脏弹原料的机会,对国家安全有着特别重要的意义。

附图说明

图1-1为20keV钼靶χ光机的能谱图;

图1-2为30keV钼靶χ光机的能谱图;

图1-3为35keV钼靶χ光机的能谱图;

图1-4为50keV钼靶χ光机的能谱图;

图2为真双能χ光机和探测器安装方式示意图;

图3为二台单能χ光机和探测器纵向安装方式示意图;

图4为伪双能χ光机和探测器安装方式示意图;

图5为二台单能χ光机和探测器横向安装方式示意图;

图6为单能X光机和伪双能探测器安装方式示意图(二组探测器也可在其它位置,如在同一横截面上)。

图中:1-测量设备;2-高能χ光机的靶点;3-高能χ光机的准直器和屏蔽室;4-(第一组)探测器;5-(第一组)探测器的屏蔽管;6-低能χ光机的靶点;7-低能χ光机的准直器和屏蔽室;8-第二组探测器;9-第二组探测器的屏蔽管;10-原油管道;12-能谱预硬化装置;13-旋转机构;20-(第一路)信号成形、放大和采样保持单元;21-第二路信号成形、放大和采样保持单元;22-(第一组)探测器的高压电源;23-第二组探测器的高压电源;24-(第一路)AD转换单元;25-第二路AD转换单元;26-(第一路)控制单元;27-第二路控制单元;28-计算机;30-真双能χ光机的控制系统;31-高能χ光机的控制系统;32-低能χ光机的控制系统;33-(第一路)亮度校正探测器;34-第三路信号成形、放大和采样保持单元;35-第三路探测器的高压电源;36-第三路AD转换单元;37-第三路控制单元;38-第二路亮度校正探测器;39-第四路信号成形、放大和采样保持单元;40-第四路探测器的高压电源;41-第四路AD转换单元;42-第四路控制单元;50-能谱过滤片。

具体实施方式

本发明技术方案以如下方式实现:

对单能γ射线来讲,与物质的相互作用遵循指数衰减规律,即公式(1)成立。

N(xm)=N0e-μm·xm---(1)

其中:N0   ----射线穿过空气后,测量的计数。

      N(xm)----射线穿过质量厚度为xm的物质后,测量的计数。

      xm   ----射线穿过物质的质量厚度。

      μm  ----射线穿过物质的质量衰减系数。

由于χ光机产生的χ射线的能谱是连续的,文献[3]给出了几种能量χ光机产生的能谱,如图1所示。具有连续能谱的的χ射线,其与物质的相互作用是否还遵循指数衰减规律呢?对这个问题的理论研究,参见文献[4]。

参见说明书末尾引述的文献[4],推导了下列命题:

在闭区间[c,d]上,用ke-αx近似代替的误差f(x)估计如下:

f(x)=ke-αx-Σi=1nkie-αix---(2)

这里,将[c,d]m等分,分点为

c=x0<x1<…<xm-1<xm=d(Δx=d-cm)

在分点xj处有

f(xj)=ke-αxj-Σi=1nkie-αixj=Rj,j=0,1,2,Λ,m---(3).

记:

R=max{|Rj|  j=0,1,2,Λ,m}

G=maxΣi=1nkie-αixjj=0,1,2,Λ,m

经过一番推导后,得出:

|f(x)|R+R4·(αΔx)2+G2αmax(αmax-αmin)(Δx)2---(4)

在本课题的实际应用中,相当于实测数据;ke-αx相当于计算拟合数据;f(x)相当于在x点对应的绝对误差;R相当于所有绝对误差中最大误差的绝对值;G相当于实测数据中最大的;α相当于等效质量吸收系数μm;αi相当于射线能量为Ei所对应的质量吸收系数μm(Ei);x相当于样品的质量厚度xm;Δx相当于选取实验数据的间隔Δxm(自变量)。理论上,Δx可以取得很小,这时|f(x)|≤R。R可以通过设计实验获得,从而得到整个函数的误差估计。如果所得到的最大误差可以接受的话,其衰减规律就可以用指数衰减规律来近似。

根据理论分析和文献[3]的实验数据发现,在吸收体不是太厚的情况下,其与物质的相互作用近似遵循指数衰减规律,如果太厚,误差就大了一点。对具体的χ光机,首先应该用实验测试一下,找出近似遵循指数衰减规律的条件。由此再依据测试样品的最大厚度,确定χ光机的最低能量EL*(对应于低能χ光机的管高压VL)。根据经验,建议依据EH*=2EL*确定EH*(对应于高能χ光机的管高压VH)的值,。

因此,不妨假设所讨论的χ光机的χ射线,在我们所讨论的测试样品的厚度范围内,仍然近似遵循指数衰减规律,即公式(1)近似成立。为了理论模型与实验数据更好的符合,特加入二个拟合系数k和c,如公式(5)所示。

N(xm)=kN0e-μm·xm+c---(5)

注意:

(1)这时在公式(5)中,应采用等效能量E*的概念。

(2)k和c的理论值为:k=1;c=0。在缺乏实验值时,可直接引用理论值。

(3)μm(E*)、k和c,可以事先通过实验测得。

(4)为了书写方便,下面中的μm(E*),均简写为μm

根据说明书末尾所列的文献[2],如果物质是混合物,其密度为ρ,线性衰减系数为μ,所含元素的质量衰减系数为...,则混合物的质量衰减系数用下式计算:

μρ=Σi(μρ)iωi---(6)

式中ω1,ω2,...,ωi...,ωN分别为组成元素的重量百分比。

注意:元素的质量衰减系数表示为μm,线性厚度为x,质量厚度为xm。即:

μm=μ/ρ  xm=x·ρ

1、考虑油水二相状态(无下标-原油+水混合状态,下标1-纯水状态,下标2-纯原油状态)

μm=ω1μm12μm2

   =ω1μm1+(1-ω1m2

   =ω1m1m2)+μm2    (7)

Θμm=μ/ρ  xm=x·ρ

μ·x=μm·xm

=(ω1(μm1-μm2)+μm2)·xm

=(ω1(μ1ρ1-μ2ρ2)+μ2ρ2)·()

=(ω1(μ1ρρ1-μ2ρρ2)+μ2ρρ2)·x---(8)

把(8)代入(5),并化简得:

(ω1(μ1ρρ1-μ2ρρ2)+μ2ρρ2)·x=ln(kN0N(x)-kcN0)

即:

ω1=ln(kN0N(x)-kcN0)-(μ2ρ2)(μ1ρ1-μ2ρ2)---(9)

在这种情况下,一个未知量含水率ω1,一个方程,故采用一台单能χ光机即可解决测量问题。

2、考虑油水气三相状态(无下标-原油+水+气混合状态,下标1-纯水状态,下标2-纯原油状态,下标3-纯天然气状态)

μm=ω1μm12μm23μm3

   =ω1μm1+(1-ω13m23μm3

   =ω1m1m2)+ω3m3m2)+μm2    (10)

Θμm=μ/ρ  xm=x·ρ

μ·x=μm·xm

=(ω1(μm1-μm2)+ω3(μm3-μm2)+μm2)·xm

=(ω1(μ1ρ1-μ2ρ2)+ω3(μ3ρ3-μ2ρ2)+μ2ρ2)·()---(11)

把(11)代入(5),并化简得:

(ω1(μ1ρ1-μ2ρ2)+ω3(μ3ρ3-μ2ρ2)+μ2ρ2)·()ρ=ln(kN0N(x)-kcN0)---(12)

为了求得含水率ω1和含气率ω3,需要列出类似(12)的二个方程。从核物理上,可以通过二种不同能量χ光机的χ射线来测量求得。

本文中,采用双能测量模式讨论如下:

设EH*、EL*分别代表χ光机的高能和低能χ射线所对应的等效能量,则(12)可以表示为:

(ω1(μ1(EH*)ρ1-μ2(EH*)ρ2)+ω3(μ3(EH*)ρ3-μ2(EH*)ρ2)+μ2(EH*)ρ2)·()

=ln(kHN0(EH*)N(x,EH*)-kHcHN0(EH*))---(13)

(ω1(μ1(EL*)ρ1-μ2(EL*)ρ2)+ω3(μ3(EL*)ρ3-μ2(EL*)ρ2)+μ2(EL*)ρ2)·()

=ln(kLN0(EL*)N(x,EL*)-kLcLN0(EL*))---(14)

理论上,可根据方程(13)和(14)求得ω1和ω3,这就是油水气三相状态下的双能χ射线测量含水率和含气率的原理。

注意:

1)在实验测量ρ1、ρ2、ρ3和ρ时,需要同时检测样品的温度、压力等参数的影响。

2)因为气体的状态与温度、压力密切相关,应用中,要测量与实际条件相一致的ρ3和μm3

3)求解方程时,要利用查表法,采用与实际条件相对应的ρ值,可以通过实时测量得到。

4)高能EH*与低能EL*的差别越大,测量精度要越好。例如:EH*(1.5~3)EL*,简单一点,EH*=2EL*.

5)公式中的各种系数,μ1、μ2、μ3、k和c等,可以在实验室中,分别用高、低能χ光机,照射不同质量厚度的标定介质(纯原油、纯水、纯天然气),用衰减测量法获得的实验数据,再按最小二乘法拟合求得。注意:k和c可以用原油所对应的值来近似,也可以针对各种情况,在实验室测出数据,建成一个数据库,在现场使用时,用查表法获取该数据。最后根据本发明推导的模型(也可以采用其它合适的模型),算出原油中的含水率、含气率等指标。

下面结合附图和具体的实施方式对本发明作进一步的描述。

参见各附图,本发明的总体设计思想:本测量装置1主要由三个大分系统组成。二种能量的χ光机构成χ射线产生分系统;一个或二套探测器构成探测器分系统;和一个总的控制和数据处理分系统组成。其它分系统部分还包括准直器,或其它机构等。探测器分系统包括探测器、前置放大器或光电倍增管、信号成形、放大、采样保持、AD转换等单元。数据的传输、同步、显示、各部分控制和报警等工作由总的控制和数据处理分系统统一完成。

图中标号含义:1-测量设备;2-高能χ光机的靶点;3-高能χ光机的准直器和屏蔽室;4-(第一组)探测器;5-(第一组)探测器的屏蔽管;6-低能χ光机的靶点;7-低能χ光机的准直器和屏蔽室;8-第二组探测器;9-第二组探测器的屏蔽管;10-原油管道;12-能谱预硬化装置;13-旋转机构;20-(第一路)信号成形、放大和采样保持单元;21-第二路信号成形、放大和采样保持单元;22-(第一组)探测器的高压电源;23-第二组探测器的高压电源;24-(第一路)AD转换单元;25-第二路AD转换单元;26-(第一路)控制单元;27-第二路控制单元;28-计算机;30-真双能χ光机的控制系统;31-高能χ光机的控制系统;32-低能χ光机的控制系统;33-(第一路)亮度校正探测器;34-第三路信号成形、放大和采样保持单元;35-第三路探测器的高压电源;36-第三路AD转换单元;37-第三路控制单元;38-第二路亮度校正探测器;39-第四路信号成形、放大和采样保持单元;40-第四路探测器的高压电源;41-第四路AD转换单元;42-第四路控制单元;50-能谱过滤片。

根据本发明的原理,给出以下四种应用实例:

1、真双能χ光机测量系统的工作原理

测量设备1的核心部件的安装位置如图2所示。

真双能χ光机的特征是高能χ射线的靶点2和低能χ射线的靶点6的位置基本重合,真双能χ光机的控制系统30控制高、低能χ射线的分时交替输出,输出脉冲的频率与流体的速度有关。理论上希望高、低能χ射线能同时打在介质的同一个位置上,实践中,可根据介质的均匀度、流速、要求监测数据的间隔等,调节其参数,以保证测试条件尽可能满足理论模型和误差要求。

由靶点2和6发出的χ射线,经过准直器3和7(二者已合为一体,为了和下文其它实例中的编号一致,特保留两个标号)后,穿过原油管道10中的介质,被探测器4转换成电信号。探测器的屏蔽管5的作用是保护探测器4和减少探测本底、散射信号对探测器4的影响。

探测器的高压电源22给探测器4提供工作电压,探测器4的信号输出到信号成形、放大和采样保持单元20,信号经过放大、处理后,送到AD转换单元24转换成数字信号,最后送到计算机28进行分析处理。控制单元26用来同步、协调各个单元或分系统的工作。

在本实例中省了第二套探测器系统,高、低能信号的识别、同步是通过真双能χ光机的控制系统30和控制单元26的信号交互来实现的。

如果χ光机的束流随时间的变化较大,即束流不稳定,则在实际处理数据时,应该对其修正。为了获得χ光机的束流随时间的变化量,需要增加用于亮度校正的探测系统。即:在χ光机的出口安装一路亮度校正探测器33,第三路探测器的高压电源35给探测器33提供高压,探测器33的信号输出到第三路信号成形、放大和采样保持单元34,信号经过放大、处理后,送到第三路AD转换单元36转换成数字信号,最后送到计算机28进行分析处理。控制单元37用来同步、协调各个单元或分系统的工作。

如果χ光机的束流稳定,对系统测量带来的误差,可以忽略,则有关亮度校正的探测系统可省略。

计算机28上的专用软件,先把探测到的数据分成高能组数据系列和低能组数据系列,应用亮度探测器获得的高、低能数据,分别对其对应时刻的所有数据进行修正,首先消除χ光机的束流随时间的变化的影响。然后,应用本发明中推导的模型(也可以采用其它合适的模型),算出原油中的含水率、含气率等指标。

2、二台单能χ光机和探测器纵向安装方式测量系统的工作原理

测量设备1的核心部件的安装位置如图3所示。

本应用实例的特点是,利用目前现有的二台单能χ光机来产生高、低能χ射线。高能χ射线的靶点2、准直器3、探测器4和屏蔽管5等组成一套高能χ射线探测通路,同理低能χ射线的靶点6、准直器7、探测器8和屏蔽管9等组成一套低能χ射线探测通路。两套探测通路越靠近,越能满足理论上希望高低能χ射线能同时打在介质的同一个位置上的理想要求。实践中,可根据介质的均匀度、流速、要求监测数据的间隔等,调节其参数,以保证测试条件尽可能满足理论模型和误差要求。

高能χ光机的控制系统31控制高能χ光机的靶点2发出高能χ射线,经过准直器和屏蔽室3后,穿过原油管道10中的介质,被第一组探测器4转换成电信号。第一组探测器的屏蔽管5的作用是保护第一组探测器4,同时减少本底、散射信号对第一组探测器4的影响。第一组探测器的高压电源22给第一组探测器4提供工作电压,第一组探测器4的信号输出到第一路信号成形、放大和采样保持单元20,信号经过放大、处理后,送到第一路AD转换单元24转换成数字信号,最后送到计算机28进行分析处理。第一路控制单元26用来同步、协调第一路各个单元和与其相关的分系统的工作。

同理低能χ光机的控制系统32控制低能χ光机的靶点6发出低能χ射线,经过准直器和屏蔽室7后,穿过原油管道10中的介质,被第二组探测器8转换成电信号。第二组探测器的屏蔽管9的作用是保护第二组探测器8,同时减少本底、散射信号对第二组探测器8的影响。第二组探测器的高压电源23给第二组探测器8提供工作电压,第二组探测器8的信号输出到第二路信号成形、放大和采样保持单元21,信号经过放大、处理后,送到第二路AD转换单元25转换成数字信号,最后送到计算机28进行分析处理。第二路控制单元27用来同步、协调第二路各个单元和与其相关的分系统的工作。

在本实例中,降低了对χ光机的设计要求,只要使用目前市场上的产品即可。同一位置上的高、低信号的可以用流体的速度和探测时间来加以同步。

如果χ光机的束流随时间的变化较大,实际处理数据时,应该对其修正。为了获得高能χ光机的束流随时间的变化量,需要增加用于亮度校正的探测系统。即:在高能χ光机的出口安装第一路亮度校正探测器33,第三路探测器的高压电源35给探测器33提供高压,探测器33的信号输出到第三路信号成形、放大和采样保持单元34,信号经过放大、处理后,送到第三路AD转换单元36转换成数字信号,最后送到计算机28进行分析处理。控制单元37用来同步、协调各个单元或分系统的工作。

同理,为了获得低能χ光机的束流随时间的变化量,在低能χ光机的出口安装第二路亮度校正探测器38,第四路探测器的高压电源40给探测器38提供高压,探测器38的信号输出到第四路信号成形、放大和采样保持单元39,信号经过放大、处理后,送到第四路AD转换单元41转换成数字信号,最后送到计算机28进行分析处理。第四路控制单元42用来同步、协调各个单元或分系统的工作。

如果χ光机的束流稳定,对系统测量带来的误差,可以忽略,则有关亮度校正的探测系统可省略。

计算机28上的专用软件,先把探测到高能组数据和低能组数据,应用亮度探测器获得的高、低能数据,分别对其对应时刻的所有数据进行修正,首先消除χ光机的束流随时间的变化的影响。然后,应用本发明中推导的模型(也可以采用其它合适的模型),算出原油中的含水率、含气率等指标。

3、伪双能χ光机测量系统的工作原理

测量设备1的核心部件的安装位置如图4所示。

本应用实例的特点是,利用目前现有的一台单能χ光机通过分时预硬化技术来产生高、低能χ射线。χ光机的靶点2、准直器3、探测器4和屏蔽管5组成一套χ射线探测通路。能谱预硬化装置12同旋转机构13安装在一起,旋转机构13的旋转中心不能遮挡χ光机的靶点2。当旋转机构13旋转的位置使能谱预硬化装置12挡住靶点2发出的χ射线时,这时从准直器3射出来的χ射线,就是高能χ射线,系统当作高能测量系统。否则,系统当作低能测量系统使用。实践中,可根据介质的均匀度、流速、要求监测数据的间隔等,调节旋转机构13旋转速度,以保证测试条件尽可能满足理论模型和误差要求。

由靶点2发出的χ射线,经过准直器3后,穿过原油管道10中的介质,被探测器4转换成电信号。探测器的屏蔽管5的作用是保护探测器4,同时减少探测本底、散射信号对探测器4的影响。探测器的高压电源22给探测器4提供工作电压,探测器4的信号输出到信号成形、放大和采样保持单元20,信号经过放大、处理后,送到AD转换单元24转换成数字信号,最后送到计算机28进行分析处理。控制单元26用来同步、协调各个单元或分系统的工作,特别是高、低能的识别是通过χ光机的控制系统30和控制单元26的信号交互来实现的。

在本实例中,降低了对χ光机的设计要求,只要使用目前市场上的产品即可。

如果χ光机的束流随时间的变化较大,实际处理数据时,应该对其修正。为了获得χ光机的束流随时间的变化量,需要增加用于亮度校正的探测系统。即:在χ光机的出口安装一路亮度校正探测器33,第三路探测器的高压电源35给探测器33提供高压,探测器33的信号输出到第三路信号成形、放大和采样保持单元34,信号经过放大、处理后,送到第三路AD转换单元36转换成数字信号,最后送到计算机28进行分析处理。控制单元37用来同步、协调各个单元或分系统的工作。

如果χ光机的束流稳定,对系统测量带来的误差,可以忽略,则有关亮度校正的探测系统可省略。

计算机28上的专用软件,先把探测到的数据分成高能组数据系列和低能组数据系列,应用亮度探测器获得的高、低能数据,分别对其对应时刻的所有数据进行修正,首先消除χ光机的束流随时间的变化的影响。然后,应用本发明中推导的模型(也可以采用其它合适的模型),算出原油中的含水率、含气率等指标。

4、二台单能χ光机和探测器横向安装方式测量系统的工作原理

测量设备1的核心部件的安装位置如图5所示。

本应用实例的特点是,利用目前现有的二台单能χ光机来产生高、低能χ射线。高能χ光机的靶点2、准直器3、探测器4和屏蔽管5组成一套高能χ射线探测通路,同理低能χ光机的靶点6、准直器7、探测器8和屏蔽管9组成一套低能χ射线探测通路。两套探测通路在原油管道10的同一个横截面上,这样减少了测量设备1的长度。注意图5中所示的两套探测通路的夹角不一定要求90°,只要能完整安装好测试部件即可。本实例要求流体在原油管道10的同一个横截面分布近似相同,这样才能满足理论上希望高低能χ射线能同时打在介质的同一个位置上的理想要求。实际应用中,可在介质流入测试设备前,采取措施对流体加以搅拌,使之混合均匀即可。

高能χ光机的控制系统31控制高能χ光机的靶点2发出高能χ射线,经过准直器和屏蔽室3后,穿过原油管道10中的介质,被第一组探测器4转换成电信号。第一组探测器的屏蔽管5的作用是保护第一组探测器4,同时减少本底、散射信号对第一组探测器4的影响。第一组探测器的高压电源22给第一组探测器4提供工作电压,第一组探测器4的信号输出到第一路信号成形、放大和采样保持单元20,信号经过放大、处理后,送到第一路AD转换单元24转换成数字信号,最后送到计算机28进行分析处理。第一路控制单元26用来同步、协调第一路各个单元和与其相关的分系统的工作。

同理低能χ光机的控制系统32控制低能χ光机的靶点6发出低能χ射线,经过准直器和屏蔽室7后,穿过原油管道10中的介质,被第二组探测器8转换成电信号。第二组探测器的屏蔽管9的作用是保护第二组探测器8,同时减少本底、散射信号对第二组探测器8的影响。第二组探测器的高压电源23给第二组探测器8提供工作电压,第二组探测器8的信号输出到第二路信号成形、放大和采样保持单元21,信号经过放大、处理后,送到第二路AD转换单元25转换成数字信号,最后送到计算机28进行分析处理。第二路控制单元27用来同步、协调第二路各个单元和与其相关的分系统的工作。

在本实例中,降低了对χ光机的设计要求,只要使用目前市场上的产品即可。同一位置上的高、低信号的可以采用混合流体的措施,使流体的横截面保持均匀,以此逼近理论模型的条件。

如果χ光机的束流随时间的变化较大,实际处理数据时,应该对其修正。为了获得高能χ光机的束流随时间的变化量,需要增加用于亮度校正的探测系统。即:在高能χ光机的出口安装第一路亮度校正探测器33,第三路探测器的高压电源35给探测器33提供高压,探测器33的信号输出到第三路信号成形、放大和采样保持单元34,信号经过放大、处理后,送到第三路AD转换单元36转换成数字信号,最后送到计算机28进行分析处理。控制单元37用来同步、协调各个单元或分系统的工作。

同理,为了获得低能χ光机的束流随时间的变化量,在低能χ光机的出口安装第二路亮度校正探测器38,第四路探测器的高压电源40给探测器38提供高压,探测器38的信号输出到第四路信号成形、放大和采样保持单元39,信号经过放大、处理后,送到第四路AD转换单元41转换成数字信号,最后送到计算机28进行分析处理。第四路控制单元42用来同步、协调各个单元或分系统的工作。

如果χ光机的束流稳定,对系统测量带来的误差,可以忽略,则有关亮度校正的探测系统可省略。

计算机28上的专用软件,先把探测到的高能组数据系列和低能组数据系列,应用亮度探测器获得的高、低能数据,分别对其对应时刻的所有数据进行修正,首先消除χ光机的束流随时间的变化的影响。然后,应用本发明中推导的模型(也可以采用其它合适的模型),算出原油中的含水率、含气率等指标。

5、单能X光机和伪双能探测器安装方式

测量设备1的核心部件的安装位置如图6所示。注意:二路探测器也可安装在其它位置,如在原油管道10同一横截面上。

本应用实例的特点是,利用目前现有的一台单能χ光机,通过对一路探测器采用预硬化技术来产生高能χ射线探测通路,另一路探测器则为低能χ射线探测通路。能谱过滤片50安装在探测器4的前面,χ光机的靶点2、准直器3、能谱过滤片50、探测器4和屏蔽管5组成一套高能χ射线探测通路。这时这一路系统当作高能测量系统。χ光机的靶点2、准直器3、第二组探测器8和第二组探测器的屏蔽管9组成另一套低能χ射线探测通路,这一路系统当作低能测量系统使用。

第一路:由靶点2发出的χ射线,经过准直器3后,穿过原油管道10中的介质,经过能谱过滤片50把能谱预硬化后,变成高能能谱,被探测器4转换成电信号。探测器的屏蔽管5的作用是保护探测器4,同时减少探测本底、散射信号对探测器4的影响。探测器的高压电源22给探测器4提供工作电压,探测器4的信号输出到信号成形、放大和采样保持单元20,信号经过放大、处理后,送到AD转换单元24转换成数字信号,最后送到计算机28进行分析处理。控制单元26用来同步、协调各个单元或分系统的工作。

第二路:由靶点2发出的χ射线,经过准直器3后,穿过原油管道10中的介质,被第二组探测器8转换成电信号。第二组探测器的屏蔽管9的作用是保护探测器8,同时减少探测本底、散射信号对探测器8的影响。第二组探测器的高压电源23给探测器8提供工作电压,探测器8的信号输出到第二路信号成形、放大和采样保持单元21,信号经过放大、处理后,送到第二路AD转换单元25转换成数字信号,最后送到计算机28进行分析处理。第二路控制单元27用来同步、协调各个单元或分系统的工作。

在本实例中,降低了对χ光机的设计要求,只要使用目前市场上的产品即可。

如果χ光机的束流随时间的变化较大,实际处理数据时,应该对其修正。为了获得χ光机的束流随时间的变化量,需要增加用于亮度校正的探测系统。即:在χ光机的出口安装一路亮度校正探测器33,第三路探测器的高压电源35给探测器33提供高压,探测器33的信号输出到第三路信号成形、放大和采样保持单元34,信号经过放大、处理后,送到第三路AD转换单元36转换成数字信号,最后送到计算机28进行分析处理。控制单元37用来同步、协调各个单元或分系统的工作。

如果χ光机的束流稳定,对系统测量带来的误差,可以忽略,则有关亮度校正的探测系统可省略。

计算机28上的专用软件,先把探测到的数据分成高能组数据系列和低能组数据系列,应用亮度探测器获得的高、低能数据,分别对其对应时刻的所有数据进行修正,首先消除χ光机的束流随时间的变化的影响。然后,应用本发明中推导的模型(也可以采用其它合适的模型),算出原油中的含水率、含气率等指标。

参考文献:

[1]任晓峰,李建等,“射线体积型原油含气、含水率分析仪的原理及应用”,自动化仪表,Vol.28,No.10,2007。

[2]李星洪,《辐射防护基础》,原子能出版社,1982年。

[3]何承发,巴维真,吾勤之等,“衰减测量法确定X光机能谱”,第九届全国核电子学与核探测技术学术年会论文集,1998年。

[4]罗平安,缪卫东,朱中梅等,“β射线的吸收规律研究”,北京核学会‘99青年核科技论文报告会文集,1999。(Luo Pingan,Miao Weidong,Zhu Zhongmei etc.“The Research on β Rays AbsorbingLaw”,’99 Youth Nuclear Technological Conference ofthe Beijing Nuclear Academy,1999.)

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号