首页> 中国专利> 一种在水体中原位取样、分离、富集、测量水体污染物的方法

一种在水体中原位取样、分离、富集、测量水体污染物的方法

摘要

一种在水体中原位取样、分离、富集、测量水体污染物的方法,该方法包括:(1)一种能够渗透被监测物质的半透膜;(2)含有能够与被监测物质相结合的高分子化合物聚乙烯醇;(3)将高分子化合物聚乙烯醇置于装置内与被测水体被半透膜分开;(4)在水体中放置一段时间;(5)取出放在水体中的装置用原子吸收光谱法或可见光谱法测定膜内高分子化合物水溶液中被测物质的浓度,并计算在放置时间内水体中被测物质的平均浓度。其主要优点有:简单,经济;可提供原位浓度、测量多种物质;具有选择性;定量测量与结合相摄取的被监测物质的动力学和半透膜的特性有关。

著录项

  • 公开/公告号CN101021514A

    专利类型发明专利

  • 公开/公告日2007-08-22

    原文格式PDF

  • 申请/专利权人 东北大学;

    申请/专利号CN200710010550.1

  • 发明设计人 范洪涛;孙挺;隋殿鹏;刘畅;

    申请日2007-03-09

  • 分类号G01N31/00(20060101);G01N1/10(20060101);G01N33/18(20060101);

  • 代理机构21109 沈阳东大专利代理有限公司;

  • 代理人梁焱

  • 地址 110004 辽宁省沈阳市和平区文化路3号巷11号

  • 入库时间 2023-12-17 19:03:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-06-09

    授权

    授权

  • 2007-10-17

    实质审查的生效

    实质审查的生效

  • 2007-08-22

    公开

    公开

说明书

技术领域

本发明涉及化学及环境监测技术领域,特别涉及一种在水体中原位取样、分离、富集、测量水体污染物的方法。

背景技术

环境污染已经成为越来越严峻的社会问题,环境监测作为环境保护的重要组成部分,曾被形象地比喻为环境保护的眼睛、哨兵和尺子,是获取环境信息、认识环境变化、评价环境质量监督排污状况的重要途径,是监督执行环境法规、环境标准的重要技术手段。在环境监测质量控制的一系列步骤中,采样是环境监测的基础,往往决定了最后结论的可信度。一些先进国家的环境保护机构对发展水中痕量污染物的富集采样技术极为重视,近十几年来原位被动采样技术作为一种新型、廉价、使用方便、应用广泛的环境水污染物采样方法,越来越受到环境分析化学研究者的广泛关注并得以迅速发展,并已广泛应用于实际环境和近原生态中,原位被动采样技术可以在不影响母体溶液浓度的前提下在线收集目标检测物质,积累在采样器中的被监测物质的浓度可以真实反映出其在被测体系中的真实浓度或者是时间平均浓度。原位被动采样方法作为一种水体被监测物质的采样方法显示出明显的优势。

发明内容

本发明主要利用高分子化合物上的特性基团与外界水体中被监测物质或被监测物质上的特性基团发生化学反应,达到原位取样、富集和定量测量的目的。

本发明方法包括:(1)一种能够渗透被监测物质的半透膜;(2)含有能够与被监测物质相结合的高分子化合物;(3)在装置内部的高分子化合物与被测水体被半透膜分开;(4)在水体中放置一定时间,放置的时间为1小时~1年。(5)利用膜的渗透作用,被测水体中被监测物质进入到被膜隔离的装置内部后,立即被高分子化合物结合,从而在膜内外形成一定的扩散梯度,在一定时间内,膜内高分子化合物结合的被测物质与被测水体中被测物质浓度、测定时间有定量关系,从而达到取样、分离和富集的目的;通过测定膜内高分子化合物水溶液中被测物质的量,从而达到定量测量的目的。

溶液中的物质可通过一个简单的方程式来表示:

M+nL→M(L)n

M:被监测物质;L:结合相(过量);M(L)n:被监测物质与高分子化合物形成的络合物。

在本发明中,大分子的扩散可能被半透膜影响。但是简单的金属离子或小分子有机化合物则可以自由地扩散,并产生一个有效的扩散系数。这与它们在水中的扩散没有区别。因此本发明允许分子体积小于半透膜孔道的可溶性物质自由扩散。

本方法所用的能够渗透被监测物质的半透膜为各种类型半透膜或选择性透过膜,其允许透过分子量大于或等于2000。本发明方法中,能够渗透被监测物质的半透膜有透析膜、色谱纸、渗析膜、生物膜、胶棉薄膜、玻璃纸、羊皮纸、动物膀胱膜等。

本发明方法中,在膜内侧含有能够与被监测物质相结合的高分子:其平均分子量应大于3000,其水溶液浓度为0.0001-1.0mol·L-1,该高分子化合物为聚乙烯醇。如果半透膜孔隙小,则所用高分子的平均分子量可小些,如果半透膜孔隙大,则所用高分子的平均分子量应大些,总的原则只能允许被监测物质自由通过半透膜扩散,而不能使膜内侧的高分子渗透到外界水相中。

本发明方法所用的装置为一种原位取样、分离、富集、测量的装置,如附图所示:该装置是在容器内装有高分子化合物,然后用半透膜将其封好,并通过橡皮垫和夹紧器将其固定即可。

本发明方法中被监测污染物包括:(1)金属元素,如:Cu,Cd,Co,Zn,Pb,Ni,Cr,Fe,U,Mn,Ag,Sb,Hg,Be,Tl,Tu,Re,V,Ti;(2)非金属元素,如:B,As,Se。

本发明方法中所述水体包括:天然淡水、天然矿化水、污水、饮用水、回用水、生物体内水、沉积物和土壤中的水。

本发明方法中,所用高分子化合物的特点是它们都能与被监测物质发生化学反应,并与被监测物质牢牢结合,使得膜内侧的高分子溶液中游离被监测物质的浓度始终保持为零。

在一个被监测物质浓度不断变化的水体中长期放置,可得到在此时间(t)范围内体系中被监测物质的平均浓度(Cm),Cm=Csample/t,式中Csample为测量浓度。

本方法的主要优点有:

(1)简单,经济。

(2)可以提供原位浓度。

(3)可以测量多种物质。

(4)具有选择性。不是测量自然水中所有的物质,只能测量那些在结合相中能被富集的物质。

(5)定量测量与结合相摄取的被监测物质的动力学和半透膜的特性有关。

(6)如果一个适当的半透膜厚度被选定,物质的传输只与分子扩散有关,物质传输过程与流体动力学无关。

附图说明

附图为本发明水体中原位取样、分离、富集、测量装置结构示意图。

图中:1聚四氟乙烯容器、2高分子化合物水溶液、3半透膜、4垫片、5夹紧器

具体实施方式

实施例1

取2mL 0.0001M聚乙烯醇(PVA)(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入重金属污染的水体中放置1h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例2

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入重金属污染的水体中放置1h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例3

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入重金属污染的水体中放置1h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例4

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入重金属污染的水体中放置12h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例5

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入重金属污染的水体中放置12h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例6

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入重金属污染的水体中放置12h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例7

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入重金属污染的水体中放置12h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例8

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入重金属污染的水体中放置12h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例9

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入重金属污染的水体中放置12h取出,利用原子吸收光谱法测定重金属的浓度,并计算在放置时间内水体中重金属的平均浓度。

实施例10

取2mL 0.0001M聚乙烯醇(PVA)(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度。

实施例11

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度。

实施例12

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度。

实施例13

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度,并计算在放置时间内水体中硼的平均浓度。

实施例14

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度,并计算在放置时间内水体中硼的平均浓度。

实施例15

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度,并计算在放置时间内水体中硼的平均浓度。

实施例16

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度,并计算在放置时间内水体中硼的平均浓度。

实施例17

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度,并计算在放置时间内水体中硼的平均浓度。

实施例18

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入硼酸盐污染或含有硼酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定硼的浓度,并计算在放置时间内水体中硼的平均浓度。

实施例19

取2mL 0.0001M聚乙烯醇(PVA)(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度。

实施例20

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度。

实施例21

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度。

实施例22

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度,并计算在放置时间内水体中钒的平均浓度。

实施例23

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度,并计算在放置时间内水体中钒的平均浓度。

实施例24

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度,并计算在放置时间内水体中钒的平均浓度。

实施例25

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度,并计算在放置时间内水体中钒的平均浓度。

实施例26

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度,并计算在放置时间内水体中钒的平均浓度。

实施例27

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入钒酸盐污染或含有钒酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钒的浓度,并计算在放置时间内水体中钒的平均浓度。

实施例28

取2mL 0.0001M聚乙烯醇(PVA)(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度。

实施例29

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度。

实施例30

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度。

实施例31

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度,并计算在放置时间内水体中锑的平均浓度。

实施例32

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度,并计算在放置时间内水体中锑的平均浓度。

实施例33

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度,并计算在放置时间内水体中锑的平均浓度。

实施例34

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度,并计算在放置时间内水体中锑的平均浓度。

实施例35

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度,并计算在放置时间内水体中锑的平均浓度。

实施例36

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入锑酸盐污染或含有锑酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定锑的浓度,并计算在放置时间内水体中锑的平均浓度。

实施例37

取2mL 0.0001M聚乙烯醇(PVA)(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度。

实施例38

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度。

实施例39

取2mL 0.0001M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置1h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度。

实施例40

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度,并计算在放置时间内水体中钛的平均浓度。

实施例41

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度,并计算在放置时间内水体中钛的平均浓度。

实施例42

取2mL 0.01M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度,并计算在放置时间内水体中钛的平均浓度。

实施例43

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度,并计算在放置时间内水体中钛的平均浓度。

实施例44

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度,并计算在放置时间内水体中钛的平均浓度。

实施例45

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共3个,将装置放入钛酸盐污染或含有钛酸盐的水体中放置12h取出,利用原子吸收光谱法或紫外-可见光谱法测定钛的浓度,并计算在放置时间内水体中钛的平均浓度。

实施例46

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共21个,将装置放入可能被硼、锑、钒、钛污染的水体中,放置1周,每天取出3个,利用原子吸收光谱法测定水体中硼、锑、钒、钛,并计算在放置时间内水体中硼、锑、钒、钛的平均浓度。

实施例47

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共21个,将装置放入可能被硼、锑、钒、钛污染的水体中,放置1周,每天取出3个,利用原子吸收光谱法测定水体中硼、锑、钒、钛,并计算在放置时间内水体中硼、锑、钒、钛的平均浓度。

实施例48

取2mL 0.02M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用火棉胶薄膜将装置封好,共21个,将装置放入可能被硼、锑、钒、钛污染的水体中,放置1周,每天取出3个,利用原子吸收光谱法测定水体中硼、锑、钒、钛,并计算在放置时间内水系中硼、锑、钒、钛的平均浓度。

实施例49

取2mL 0.05M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用透析膜将装置封好,共36个,将装置放入可能被硼、锑、钒、钛污染的水体中,放置1年,每个月取出3个,利用原子吸收光谱法测定水体中硼、锑、钒、钛的浓度,并计算在放置时间内水系中硼、锑、钒、钛的平均浓度,并可了解硼、锑、钒、钛浓度与季节的关系以及硼、锑、钒、钛浓度在全年的变化情况。

实施例50

取2mL 0.05M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用色谱纸将装置封好,共36个,将装置放入可能被硼、锑、钒、钛污染的水体中,放置1年,每个月取出3个,利用原子吸收光谱法测定水体中硼、锑、钒、钛的浓度,并计算在放置时间内水系中硼、锑、钒、钛的平均浓度,并可了解硼、锑、钒、钛浓度与季节的关系以及硼、锑、钒、钛浓度在全年的变化情况。

实施例51

取2mL 0.05M PVA(按羟基浓度计算)装入容积为2mL的聚丙烯的装置后,用胶棉薄膜将装置封好,共36个,将装置放入可能被硼、锑、钒、钛污染的水体中,放置1年,每个月取出3个,利用原子吸收光谱法测定水体中硼、锑、钒、钛的浓度,并计算在放置时间内水系中硼、锑、钒、钛的平均浓度,并可了解硼、锑、钒、钛浓度与季节的关系以及硼、锑、钒、钛浓度在全年的变化情况。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号