首页> 中国专利> 可变容量型旋转式压缩机及其驱动方法以及具有该压缩机的空调的驱动方法

可变容量型旋转式压缩机及其驱动方法以及具有该压缩机的空调的驱动方法

摘要

在可变容量型旋转式压缩机,可变容量型旋转式压缩机的运行方法,和具有可变容量型旋转式压缩机的空调的运行方法中,形成有多个排出孔(22、32),该排出孔(22、32)中的一个排出孔连接至旁通孔(14),该旁通孔根据压力差由滑动阀(81)打开和关闭,以便选择性地连接至进入孔(12)。因此,在压缩机的容量改变运行期间,提高冷却能力下降速度,使得能够多样地控制空调,以及能够降低压缩机和具有压缩机的空调的不必要的电力消耗。而且,通过利用经济且可靠的导向阀(91)能够迅速和精确地切换滑动阀(81)的背压。因此,根据本发明的可变容量装置(80)能够广泛地用于将要执行频繁的冷却能力控制的压缩机或空调,以及能够防止发生压缩机或空调的效率退化。

著录项

  • 公开/公告号CN1993554A

    专利类型发明专利

  • 公开/公告日2007-07-04

    原文格式PDF

  • 申请/专利权人 LG电子株式会社;

    申请/专利号CN200580026715.3

  • 发明设计人 小津政雄;

    申请日2005-08-04

  • 分类号F04C28/26;

  • 代理机构中原信达知识产权代理有限责任公司;

  • 代理人刘建功

  • 地址 韩国首尔

  • 入库时间 2023-12-17 18:46:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-09-28

    未缴年费专利权终止 IPC(主分类):F04C28/26 授权公告日:20120530 终止日期:20150804 申请日:20050804

    专利权的终止

  • 2012-05-30

    授权

    授权

  • 2007-08-29

    实质审查的生效

    实质审查的生效

  • 2007-07-04

    公开

    公开

说明书

技术领域

本发明涉及可变容量型旋转式压缩机,尤其涉及可变容量型旋转式压缩机,可变容量型旋转式压缩机的运行方法,和用于具有可变容量型旋转式压缩机的空调的运行方法,该可变容量型旋转式压缩机能够通过排出压缩室的致冷气体,从而控制冷却能力。

背景技术

通常,旋转式压缩机用于空调。由于空调功能的多样化,正需要能够改变其容量的旋转式压缩机。

对于用于改变旋转式压缩机的容量的技术,已熟知所谓的通过采用变换马达以控制压缩机的旋转的转换方法。然而,这种技术由于以下原因而存在问题。首先,变换马达本身昂贵,这将导致单价的增加。而且,即使大多数空调用作冷却装置,但是在寒冷的环境下改善冷却能力比在温暖的环境下改善冷却能力更加困难。

为此,正在广泛使用“通过容量排除切换改变压缩致冷剂的能力的技术”(空转或压缩转换技术)以代替上述转换方法,其中一部分被压缩在汽缸中的致冷气体被导向到汽缸的外面,以改变压缩室的容量。

然而,由于致冷剂以旁通方式通过阀门,故大多数采用空转或压缩转换技术的可变容量的压缩机具有旁通回路的阻力大的缺点。因此,容量排除运行中的冷却能力下降速度仅为能力满载运行中的冷却能力下降速度的80-85%。

而且,由于那些压缩机不能迅速地切换他们的运行模式,故在将运行模式使用于需要频繁的冷却能力控制的压缩机或空调方面存在限制。

发明内容

因此,本发明的目的是提供可变容量型旋转式压缩机,可变容量型旋转式压缩机的运行方法,和具有可变容量型旋转式压缩机的空调的运行方法,该可变容量型旋转式压缩机能够允许对空调的运行进行各种控制,以及在容量排除运行期间通过提高冷却能力下降速度以防止不必要的电力消耗。

本发明的另一个目的是提供可变容量型旋转式压缩机,可变容量型旋转式压缩机的运行方法,和具有可变容量型旋转式压缩机的空调的运行方法,为此,该可变容量型旋转式压缩机能够迅速地转换其运行模式,使得其能够用于将要执行频繁的冷却能力控制的压缩机或空调。

为了达到上述目的,提供有可变容量型旋转式压缩机,其包括:壳体,该壳体具有与蒸发器连通的进气管和与冷凝器连通的排气管;汽缸,该汽缸固定地安装在壳体上,该汽缸包括内部空间,在该内部空间的中心,滚动活塞在环行的同时压缩致冷剂,进入孔,该进入孔以径向方向穿透地形成在内部空间并与进气管连通,以及叶片缝隙,该叶片缝隙以径向方向形成以便支承叶片,该叶片在径向方向上与滚动活塞相接触并将内部空间分成压缩室和进入室;多个支承板,该多个支承板通过覆盖汽缸的上下两侧共同形成内部空间,排出孔,该排出孔形成在同一轴线上,并且与汽缸的内部空间相连通以及排出压缩致冷剂,和旁通孔,该旁通孔与一个排出孔连通并与汽缸的进入孔连通;多个排出阀,该多个排出阀安装在每个排出孔的前端表面上,以便打开和关闭每个支承板的排出孔;容量变化单元,该容量变化单元连接至支承板,并且选择性地打开和关闭支承板的旁通孔,以将一部分压缩致冷剂排除至进入孔;和背压切换单元,该背压切换单元差别地供应背压至容量变化单元,以便允许容量变化单元根据压缩机的运行模式打开和关闭旁通孔。

为了达到上述目的,提供有可变容量型旋转式压缩机,其包括:壳体,该壳体具有与蒸发器连通的进气管和与冷凝器连通的排气管;汽缸,该汽缸固定地安装在壳体上,该汽缸包括内部空间,在该内部空间的中心,滚动活塞在环行的同时压缩致冷剂,进入孔,该进入孔以径向方向穿透地形成在内部空间并与进气管连通,以及叶片缝隙,该叶片缝隙以径向方向形成以便支承叶片,该叶片在径向方向上与滚动活塞相接触并将内部空间分成压缩室和进入室;多个支承板,该多个支承板通过覆盖汽缸的上下两侧共同形成内部空间,排出孔,该排出孔形成在不同的轴线上,并且与汽缸的内部空间相连通以及排出压缩致冷剂,和旁通孔,该旁通孔与一个排出孔连通并与汽缸的进入孔连通;多个排出阀,该多个排出阀安装在每个排出孔的前端表面上,以便打开和关闭每个支承板的排出孔;容量变化单元,该容量变化单元连接至支承板,并且选择性地打开和关闭支承板的旁通孔,以将一部分压缩致冷剂排除至进入孔;和背压切换单元,该背压切换单元差别地供应背压至容量变化单元,以便允许容量变化单元根据压缩机的运行模式打开和关闭旁通孔。

为了达到上述目的,提供有权利要求1或3所述的可变容量型旋转式压缩机的运行方法,交替执行:动力运行模式,其中由于启动压缩机时容量变化单元阻塞旁通孔,故以最大冷却能力运行;和节约运行模式,其中,在动力运行模式期间,如果在通过控制单元计算压缩机的恰当的冷却能力之后,需要降低冷却能力,则运行背压切换单元,使得容量变化单元打开旁通孔,以允许汽缸内的所有压缩致冷剂被排除至进入孔。

为了达到上述目的,提供有权利要求2或4所述的可变容量型旋转式压缩机的运行方法,交替执行:中间运行模式,其中当启动压缩机时容量变化单元打开旁通孔,以便允许汽缸的一部分压缩致冷剂被排除至进入孔;动力运行模式,其中由于在执行中间运行模式一定时间后运行背压切换单元使容量变化单元阻塞旁通孔,故以最大冷却能力运行;和中间运行模式,其中,在动力运行模式期间,如果在通过控制单元计算压缩机的恰当的冷却能力之后需要降低冷却能力,则以相反的方式运行背压切换单元,使得容量变化单元打开旁通孔,以允许汽缸的一部分压缩致冷剂被排除至进入孔。

为了达到上述目的,提供有具有权利要求1或3所述的可变容量型旋转式压缩机的空调的运行方法,执行:最大冷却能力模式,其中,如果在供电情况下比较室内温度和设置温度(A)时,室内温度高于设置温度(A),则由于压缩机的容量变化单元阻塞与汽缸的内部空间连通的旁通孔,故以最大冷却能力运行;最小冷却能力模式,其中,在最大冷却能力模式期间,如果在比较室内温度和设置温度(A)时,室内温度低于设置温度(A),则容量变化单元打开旁通孔以允许汽缸的内部空间的所有压缩致冷剂被排除至进入孔,其中如果室内温度高于设置温度(A),则继续执行最大冷却能力模式;和停止模式,其中,在最小冷却能力模式期间,如果在比较室内温度和设置温度(B)时,室内温度低于设置温度(B),则通过切断电力而停止压缩机。

为了达到上述目的,提供有具有权利要求1和3或2和4所述的可变容量型旋转式压缩机的空调的运行方法,执行:中间冷却能力模式,其中,如果在供电情况下比较室内温度和设置温度(A)时,室内温度高于设置温度(A),则压缩机的容量变化单元打开与汽缸的内部空间连通的旁通孔,以汽缸内的一部分压缩致冷剂被排除至进入孔;最大冷却能力模式,其中,在中间冷却能力模式期间,如果在比较室内温度和设置温度(A)时,室内温度高于设置温度(A),则由于容量变化单元阻塞与汽缸的内部空间连通的旁通孔,故以最大冷却能力运行;中间冷却能力模式,其中,在最大冷却能力模式期间,如果在比较室内温度和设置温度(A)时,室内温度低于设置温度(A),则打开旁通孔以允许一部分压缩气体被排除;和停止模式,其中,在中间冷却能力模式期间,如果在比较室内温度和设置温度(B)时,室内温度低于设置温度(B),则通过切断电力而停止压缩机。

效果

在可变容量型旋转式压缩机,可变容量型旋转式压缩机的运行方法,和具有可变容量型旋转式压缩机的空调的运行方法中,形成有多个排出孔,该排出孔中的一个排出孔连接至旁通孔,该旁通孔根据压力差由滑动阀打开和关闭,以便选择性地连接至进入孔。因此,在压缩机的容量改变运行期间,提高冷却能力下降速度,使得能够多样地控制空调,以及能够降低压缩机和具有压缩机的空调的不必要的电力消耗。

而且,通过利用导向阀能够迅速和精确地切换滑动阀的背压,其中该导向阀为经济地且可靠地。因此,根据本发明的可变容量装置能够广泛地用于将要执行频繁的冷却能力控制的压缩机或空调,以及能够防止发生压缩机或空调的效率退化。

附图说明

图1为表示空调的方框图,该空调具有根据本发明的一个实施例的可变容量的旋转式压缩机;

图2为沿图3的线II-II所得的剖面图,用于说明根据本发明的一个实施例的可变容量型旋转式压缩机的一个示例;

图3为沿图2的线I-I所得的剖面图;

图4为表示根据本发明的一个实施例的可变容量型旋转式压缩机的动力运行过程的视图;

图5为表示根据本发明的一个实施例的可变容量型旋转式压缩机的节约运行过程的视图;

图6和7为说明空调的运行方面的示意图和流程图,该空调具有根据本发明的一个实施例的可变容量型旋转式压缩机;

图8为沿图2的线I-I所得的剖面图,用于说明根据本发明的另一个实施例的可变容量型旋转式压缩机;

图9为表示根据本发明的另一个实施例的可变容量型旋转式压缩机的动力运行过程的视图;

图10为表示根据本发明的另一个实施例的可变容量型旋转式压缩机的中间运行过程的视图;

图11和12为说明空调的运行方面的示意图和流程图,该空调具有根据本发明的另一个实施例的可变容量型旋转式压缩机;

图13为表示根据本发明的可变容量型旋转式压缩机的旁通孔的改进示例的剖面图。

具体实施方式

在下文中,将详细描述可变容量型旋转式压缩机,可变容量型旋转式压缩机的驱动方法,和具有根据本发明的一个实施例的可变容量型旋转式压缩机的空调的驱动方法。

图1为表示空调的方框图,该空调具有根据本发明的一个实施例的可变容量的旋转式压缩机;图2为沿图3的线II-II所得的剖面图,用于说明根据本发明的一个实施例的可变容量型旋转式压缩机的一个示例;图3为沿图2的线I-I所得的剖面图;图4为表示根据本发明的一个实施例的可变容量型旋转式压缩机的动力运行过程的视图;图5为表示根据本发明的一个实施例的可变容量型旋转式压缩机的节约运行过程的视图;图6和7为说明空调的运行方面的示意图和流程图,该空调具有根据本发明的一个实施例的可变容量型旋转式压缩机;图8为沿图2的线I-I所得的剖面图,用于说明根据本发明的另一个实施例的可变容量型旋转式压缩机;图9为表示根据本发明的另一个实施例的可变容量型旋转式压缩机的中间运行过程的视图;图10为表示根据本发明的另一个实施例的可变容量型旋转式压缩机的中间运行过程的视图;图11和12为说明空调的运行方面的示意图和流程图,该空调具有根据本发明的另一个实施例的可变容量型旋转式压缩机;

如图1至3所示,根据本发明的旋转式压缩机包括壳体1,其中进气管(SP)和排气管(DP)可连通地安装至壳体1,马达单元,该马达单元安装在壳体1的上侧并产生旋转力,和压缩单元,该压缩单元安装在壳体的下侧并通过由马达单元产生的旋转力压缩致冷剂

马达单元包括定子(Ms)和转子(Mr),其中定子(Ms)固定在壳体1的内部并从外面接收电力,转子(Mr)与定子(Ms)间隔一定间隙地布置在定子(Ms)上,并与定子(Ms)旋转且相互配合。

该压缩单元包括汽缸10,该汽缸10为环形并安装在壳体1的内部,主轴承板(主轴承)20和副轴承板(副轴承)30,该主轴承20和副轴承30覆盖汽缸的上下两侧并共同形成内部空间(V),旋转轴40,该旋转轴40压力地插入转子(Mr)中,并且支承在主轴承20和副轴承30上以及传递旋转力,滚动活塞50,该滚动活塞50以旋转方式连接至旋转轴40的偏心部分41,并在汽缸10的内部空间内环行时压缩致冷剂,叶片60,该叶片60以径向方向可移动地连接至汽缸10以与滚动活塞50的外圆周表面压力地接触,并且将汽缸10的内部空间(V)分成进入室和压缩室,以及第一排出阀71和第二排出阀72,该第一排出阀71和第二排出阀以可打开和可关闭的方式连接至第一排出孔2和第二排出孔32的前端,其中第一排出孔2和第二排出孔32分别设置在主轴承20和副轴承30上。

而且,压缩单元还包括容量变化单元80,该容量变化单元80设置在副轴承10的一侧上并改变压缩室的容量,背压切换单元,该背压切换单元连接至容量变化单元80并根据压缩机的运行模式通过压力差运行容量变化单元80。

如图1至3所示,汽缸10形成为环形以允许滚动活塞50进行相对移动,该汽缸10包括叶片缝隙11,该叶片缝隙11线性地形成在汽缸10的一侧上,从而允许叶片60以径向方向线性移动,进入孔12,该进入孔12以径向方向穿透地形成在叶片缝隙11的一侧上并与进气管(SP)连通,第一导气槽13a和第二导气槽13b,该第一导气槽13a和第二导气槽13b形成在叶片缝隙11的另一侧上,并与主轴承20和副轴承30的第一排出孔22和第二排出孔32连通,从而促使致冷气体的排出,和连通孔14,该连通孔14以轴向方向穿透地形成在进入孔12的下面并与进入孔12连通,从而将致冷剂引入至汽缸10的内部空间(V),其中致冷剂经过旁通孔13。

主轴承20形成为盘状,并在其中心具有在径向方向上支承旋转轴40的轴承孔22。对于主轴承20,第一排出孔22形成在汽缸10的一侧上,即形成在主轴承20的一部分上,该部分在滚动活塞50旋转的方向上远离叶片缝隙11大约345度的最大压缩角。具有共振室的第一消声器23固定地安装在主轴承20的上表面上,以便容纳第一排出孔22。

副轴承30形成为盘状,并在其中心具有在径向方向上支承旋转轴40的轴承孔32。对于副轴承30,第二排出孔32形成在汽缸10的叶片缝隙11的一侧上,即形成在副轴承30的一部分上,该部分在滚动活塞50旋转的方向上远离叶片缝隙11大约345度的最大压缩角。第二消声器33具有共振室以容纳第二排出孔32,汽缸10的连通孔14固定地安装在副轴承30的下表面上。此时,优选地,形成气体流路(连同旁通孔使用)形成为特定的深度,以连接第二排出孔32和汽缸10的连通孔14以及连同第二消声器33形成旁通孔34。

如图3所示,第二排出孔32可与第一排出孔22共线形成,即第二排出孔32与第一排出孔22在轴向方向上对齐。然而,有需要时,如图8所示,第二排出孔32优选地形成在以下位置,即在进入孔12的方向(即滚动活塞旋转的方向)上离叶片缝隙11大约170-200度(更具体地,180-190度)的范围之内,进入端的汽缸压力变得低于壳体1内的压力的位置,使得节约运行模式期间的冷却能力能够改变至50%。

第二排出孔32可以具有与第一排出孔22的直径相同的直径。有需要时,第二排出孔32的直径优选地大于第一排出孔22的直径,使得可以容易地打开第二排出阀71。

而且,阀孔35形成在副轴承30的一侧上,即形成在从平面投影的角度看,在相交于进入孔12的方向上,垂直于汽缸10的进入孔12的位置,其中容量变化单元80的滑动阀81滑动地插入阀孔35中。

阀孔35由在副轴承30的一侧的外圆周表面上像凹槽一样凹陷而成,使得其侧面像壁面一样形成,从而支承将在下文中描述的阀门弹簧82的一端或支承滑动阀81的第一压力部分81a的后表面,以及打开其前表面,其中阀门止动件83压力地插入,从而支承将在下文中描述的滑动阀81的第二压力部分81b。此时,第一背压孔35a和第二背压孔83a分别形成阀孔35的壁面的中央部分和阀门止动件83的中央部分上,同时第一背压孔35a和第二背压孔83a分别连接至背压切换单元(将在下文中描述)的第一连接管92和第二连接管93,以供应高压空气或低压空气至滑动阀81。

第一排出阀71和第二排出阀72可以具有相同的弹性系数。然而,有需要时,优选地第二排出阀72的弹性系数小于第一排出阀71的弹性系数,使得能够容易地打开第二排出阀72和能够迅速地旁通压缩致冷剂。

如图2至5所示,容量变化单元80包括滑动阀81,该滑动阀81滑动地插入阀孔35中,同时当滑动阀81根据背压切换单元造成的压力差在阀孔35内移动时,滑动阀81打开和关闭旁通孔34,至少一个阀门弹簧82,该阀门弹簧82弹性地支承滑动阀81的移动方向,并且当在两个端部之间不存在压力差时允许滑动阀81在关闭位置移动,和阀门止动件83,该阀门止动件83遮挡阀孔35以阻止滑动阀82的分离。

滑动阀81包括第一压力部分81a,该第一压力部分81a形成为与阀孔35的内圆周表面滑动地接触,并且朝阀孔35的壁面放置,以及在从背压切换单元接收压力之后打开和关闭旁通孔35,第二压力部分81b,该第二压力部分81形成为与阀孔35的内圆周表面滑动地接触,并且朝阀门止动件83放置,以及从背压切换单元接收压力,和连通部分81c,该连通部分81c连接两个压力部分81a和81b,并且具有形成在其外圆周表面和阀孔35之间的气体通路,同时该连通部分81c与旁通孔34连通。

第一压力部分81a长于旁通孔34的直径,弹簧安装凹槽81d从第一压力部分8的后端向内形成,以便能够最小化阀门的长度,其中阀门弹簧82插入地固定至弹簧安装凹槽81d。

背压切换单元包括压力切换阀门组件91,该压力切换阀门组件91与进气管(SP)和排气管(DP)连通,并且形成为交替连接进气管(SP)和排气管(DP)至容量变化单元80的两个侧面,第一连接管92,该第一连接管92连接压力切换阀门组件91的第一出口94c至第一压力部分81a,第二连接管92,该第二连接管92连接压力切换阀门组件91的第二出口94d至容量变化单元8的第二压力部分81b。

该切换阀门组件91包括:切换阀门外壳94,该切换阀门外壳94具有与进气管(SP)相连接的低压侧进口94a,连接至排气管(DP)的高压侧进口94b,连接至第一连接管92的第一出口94c,和连接至第二连接管93的第二出口94d;切换阀门95,该切换阀门95滑动地连接至切换阀门外壳94的内部,并且选择性地允许低压侧进口94a和第一出口94c之间的连接和高压侧进口94b和第二出口94d之间的连接,或者低压侧进口94a和第二出口94d之间的连接和高压侧进口94d和第一出口94c之间的连接;电磁体96,该电磁体96安装在切换阀门外壳94的一侧上,并且通过施加电力移动切换阀门95;和切换阀门弹簧97,该切换阀门弹簧97包括压缩弹簧,该压缩弹簧用于当切断施加于电磁体96的电力时将切换阀门95复位。

优选地,电磁体96尽可能地小,并且达到大约15瓦/小时或更少的小电力消耗,从而改善可靠性和降低成本和电力消耗。

在附图中,未描述的附图标记2为冷凝器,3为膨胀机构,4为蒸发器,5为存储器,6为冷凝器鼓风扇,113为阀门止动件以及114为插头。

现在将描述根据本发明的可变容量型旋转式压缩机的运行和效果。即,当施加电力至马达单元时,旋转轴40旋转,滚动活塞50在汽缸10的内部空间(V)内环行,并与叶片60形成容积,使得吸入和压缩致冷气体,并将致冷气体排出至壳体1。致冷气体排出至冷却循环装置的冷凝器2,顺次通过膨胀机构3和蒸发器,然后通过进气管(SP)重新吸入汽缸10的内部空间(V)。重复执行这样一系列的过程。

此时,该可变容量型压缩机根据采用可变容量型压缩机的空调的运行状态以节约运行模式或动力运行模式运行。现在将更详细地描述运行。如图4所示,在动力运行模式期间,通过施加电力至背压切换单元的电磁体96,其中该背压切换单元为导向阀,切换阀门95通过克服切换阀门弹簧97的弹力移动,以允许高压侧进口94a与第一连接管92连通,以及允许低压侧进口94b与第二连接管93连通。因此,通过排气管(DP)排出的高压致冷气体通过第一连接管92朝滑动阀81的第一压缩部分81a引入,同时吸入进气管(SP)的低压致冷气体通过第二连接管93朝滑动阀81的第二压力部分81b引入,使得滑动阀81朝第二压力部分81b移动以允许第一压力部分81a阻塞旁通孔32。此时,压缩在汽缸10的内部空间(V)内的压缩气体克服第一排出阀81和第二排出阀75,通过第一排出孔22和第二排出孔32,并且排出至第一消声器23和第二消声器33。此时,由于滑动阀81阻塞旁通孔34,故排出至第二消声器33的压缩气体仅以最初的驱动阶段临时排出,而不能更进一步地排出。最后,所有的压缩气体通过第一排出孔22排出到壳体1内,并且移动至冷凝器2。由于当启动压缩机时,第一连接管92的压力与第二连接管93的压力相平衡,故这种运行能够以如下方式执行动力运行模式,即滑动阀81的第一压力部分81a仅利用阀门弹簧82的弹力阻塞旁通孔34,而不用单独运行背压切换单元。

然后,如图5所示,在节约运行模式期间,通过切断施加于背压切换单元的电磁体96的电力,其中该背压切换单元为导向阀,切换阀门95通过切换阀门弹簧97的恢复力移动,以允许高压侧进口94a与第二连接管93连通,以及允许低压侧进口94b与第一连接管92连通。因此,通过排气管(DP)排出的高压致冷气体通过第二连接管93朝滑动阀81的第二压力部分81b引入,同时吸入进气管(SP)的低压致冷气体朝滑动阀81的第一压力部分81a引入,使得滑动阀81通过克服阀门弹簧82的弹力朝第一压力部分81a移动,以及旁通孔34遇到待打开的滑动阀81的连通部分81c。此时,由于排出至第二消声器33的压缩气体通过旁通孔34并引入至进入孔12,故第二消声器33处在相比于第一消声器23相对较低的压力状态。因此,从汽缸10排出的致冷气体仅朝处于相对较低的压力状态的第二排出孔32排出,使得压缩机很少执行压缩。

具有根据本发明的可变容量型装置的旋转式压缩机以图7所示的方式运行。即,在可变容量单元80的滑动阀81阻塞副轴承30的旁通孔34的情况时,以动力运行模式运行,从而达到最大的冷却能力。

然后,控制单元计算处于动力运行模式的压缩机的恰当的冷却能力。如果需要降低冷却能力,运行背压切换单元以因此供应高压致冷气体至高压侧进口94a和第一连接管92,并且供应低压致冷气体至低压侧进口94b和第二连接管93,以便执行节约运行模式。此时,在节约运行模式中,容量变化单元80的滑动阀81打开旁通孔34,汽缸10的所有压缩致冷剂排除至进入孔12。此时,如果长时间(通常地,长于一分钟)地延续节约运行,系统的压力差将不再存在,同时在切换滑动阀81之后,有意的动力运行变得不可能。即,由于即使在高压侧和低压侧之间不存在最小压力差,也不能执行从节约运行模式到动力运行模式的切换。为此,优选地,根据运行条件,冷凝器2和蒸发器4的温度或冷凝器2和蒸发器4之间的温差,或通过检测高低压力的方法设置最大节约运行时限。此时,最经济的方法是通过利用冷凝器2和蒸发器的温度以及冷凝器2和蒸发器之间的温差设置时限。

如图8所示,具有根据本发明的可变容量型旋转式压缩机的空调能够如图8所示的运行。首先,由于施加电力,室内温度和设置温度(A)相比较,同时执行实现压缩机的最大冷却能力的最大冷却能力运行(动力运行)。即检测室内温度,然后室内温度与设置温度(A)相比较,如果室内温度高于设置温度(A),则在控制背压切换单元以允许容量变化单元80阻塞旁通孔34的情况中运行压缩机。此时,在以最大冷却能力启动之前,室内温度与设置温度(A)相比较,同时根据温差确定压缩机所需的总冷却能力,以便根据所确定的冷却能力运行。因此,能够多样地控制空调的冷却能力,提高空调的效率,以及能够防止不必要的电力消耗。

然后,在最大冷却能力运行期间,室内温度与设置温度(A)相比较。如果室内温度高于设置温度(A),则继续最大冷却能力运行。相反,如果室内温度低于设置温度(A),则控制背压切换单元以允许容量变化单元80打开旁通孔34,因此压缩在汽缸10内的所有致冷气体排除至进入孔12,从而实现最小冷却能力运行模式(节约运行),其中压缩机的冷却能力变为零。此时,在空调的情况下,在反馈室内温度相对较短的时间周期(如三分钟)之后,控制冷却能力。一般地,如果执行最小冷却能力运行长于一分钟,则系统的压力差将消失,这将不可能在切换压缩机的滑动阀81之后有意地将运行模式转换至最大冷却能力运行模式。因此,由于压缩机的运行方法,优选地,根据运行条件,冷凝器和蒸发器的温度或冷凝器和蒸发器之间的温差,或通过检测高低压力的方法设置最大冷却能力运行时限。优选地,执行压缩机的节约运行和最小冷却能力运行相当于动力运行时间的30-40%的时间周期,以便产生所需的最小压力差。

例如,由于具有根据本实施例的容量变化装置的旋转式压缩机的冷却能力在节约运行模式时为零,故如果希望总冷却能力为40%达三分钟,则执行动力运行达0.4*时间(t)的时间周期,同时执行节约运行达0.4*时间(t)的时间周期。此时,由于不能执行节约运行长于一分钟,故执行动力运行0.4分钟以及执行节约运行一分钟,使得经常转换用于控制压缩机的容量的一系列运行模式以优化空调的运行。在节约运行期间,通过停止压缩机可最小化电力消耗。

现在将描述本发明的另一个实施例。即在上述一个实施例中,多个排出孔22和32布置在相同的轴线上,压缩机的运行被分成动力运行模式(冷却能力;100%运行)和节约运行模式(冷却能力;0%运行)的两种模式。而且,采用压缩机的空调的运行也被分成最大冷却能力运行(压缩机的动力运行)和最小冷却能力运行(压缩机的节约运行)。而且,在比较室内温度和设置温度之后,控制最大冷却能力运行的运行时间和最小冷却能力运行的运行时间,从而获得最优的空气调节效果。然而,如图8所示,在本实施例中,第一排出孔22和第二排出孔32以预定间隔形成在不同的轴线上。在这种情形中,动力运行模式与两个排出孔在相同的轴线上对齐的情形相似,其中通过关闭旁通孔33运行。然而,如果打开旁通孔,一部分致冷气体通过第二排出孔32排除,剩余的致冷气体仍然通过旋转活塞50朝第一排出孔22移动,以便进一步压缩和排出。因此,压缩机以最大运行(即动力运行模式)的大约50%的容量运行。因此,能够最小化压缩机结构,同时能够降低压缩机的容量大约50%,这将允许执行各种运行模式和改善压缩机的效率。

如果多个排出孔如上所述地布置在不同的轴线上,能够以中间运行模式运行压缩机,该中间运行模式能够降低启动负载。例如,如图9所示,支承滑动阀81的阀门弹簧82布置在第二压缩部分81b的后表面上。当在停止压缩机时高压侧的压力和低压侧的压力平衡时,滑动阀81利用阀门弹簧82的弹力朝附图的右侧移动,使得滑动阀81的连通部分81c与旁通孔34重叠。如果压缩机以这种状态启动,则一部分压缩致冷剂将通过第二排出孔22泄漏至旁通孔34,剩余的致冷剂按照原样压缩并通过第一排出孔22排出至壳体1。采用这种方式,压缩机以中间运行模式启动。

然后,如图10所示,通过以相反的方式运行背压切换单元,高压致冷气体供应至滑动阀81的第一压缩部分81a的后表面,使得滑动阀81移动至左侧,以允许第一压缩部分81a阻塞旁通孔34。因此,汽缸之的所有压缩致冷剂通过第一排出孔22排出至壳体1,以便压缩机以动力运行模式运行。

然后,如上所述,重复执行以下过程,即将运行模式转换为中间运行模式,并且在一定的时间周期(一分钟之内)后将运行模式再次转换为动力运行模式,从而如图11所述的继续运行压缩机。

现在将描述采用可变容量型旋转式压缩机的空调的运行,其中多个排出孔布置在不同的位置。即,由于施加电力,故执行中间运行模式一定的时间周期,其中汽缸内的一部分压缩气体排除至旁通孔34。

然后,室内温度与设置温度(A)相比较。如果室内温度高于设置温度(A),则以容量变化单元80的滑动阀81阻塞旁通孔34的状态运行,从而执行最大冷却能力运行(动力运行)。

然后,在最大运行模式期间,室内温度与设置温度(A)相比较。如果室内温度低于设置温度(A),则执行中间冷却能力运行,其中通过打开旁通孔34排除一部分压缩气体。此时,在中间冷却能力运行期间,如果室内温度低于设置温度(A),则室内温度与设置温度(B)相比较。如果室内温度高于设置温度(B),则继续中间冷却能力运行。然而,如果室内温度低于设置温度(B)时,停止压缩机。

然后,在中间运行模式期间,室内温度与设置温度(B)相比较。如果室内温度低于设置温度(B),切断电力以便停止压缩机。此时,在执行动力运行或中间运行之前,室内温度与设置温度(A)相比较。然后,在根据温差确定压缩机所需的总冷却能力之后运行,使得能够多样地控制空调的冷却能力,从而改善空调的效率和阻止不必要的电力消耗。例如,如果希望压缩机的总冷却能力为大约20%达三分钟,则执行动力运行0.2*时间(t)的时间周期,执行中间运行0.8*时间(t)的时间周期。而且,由于当启动压缩机时执行中间冷却能力运行,故能够以降低的压缩负载容易地启动压缩机,同时即使在高压侧和低压侧之间的压力平衡消失的状态,也能够运行压缩机,从而缩短重新启动所需的时间。而且,能够降低启动压缩机时所产生的压缩机振动,以及能够防止由于压缩气体的反流而发生的旋转轴的反向旋转,从而改善压缩机的可靠性。此外,根据本实施例,如果在中间运行期间压缩机的冷却能力过度,则能够在停止和中间运行之间频繁的切换而优化空气调节运行。

在根据本发明的可变容量型旋转式压缩机中,第二排出孔32可形成第二副轴承30。然而,有需要时,第二排出孔32可从汽缸110的内圆周表面穿透至其外圆周表面形成。如图13所示,即第二排出孔111形成在汽缸110的一侧的圆周表面上以旁通一部分致冷气体。第一排出孔(未示出)形成在主轴承120上,该主轴承120覆盖汽缸110的上表面,旁通孔形成在副轴承130上以与第二排出孔111连通,从而允许第二排出孔与汽缸110的进入孔(未示出)连通,该副轴承130覆盖汽缸110的下表面。

优选地,一个实施例的第二排出孔111的直径或第二排出阀的弹性系数适用于这种情形。

而且,打开和关闭第一排出孔的排出阀(未示出)为盖型阀门,该盖型阀门的一端是固定的,第二排出阀112形成为板状阀门以滑动地打开和关闭。为此,与第二排出孔111连通的特殊的阀孔110a以径向方向穿透地形成在汽缸110上。

如上所述,提供有多个排出孔和多个排出阀,能够自由地改变他们中的一个的位置角,使得能够任意地将能力降低模式中的冷却能力设置在0-100%之间。因此,能够根据各种环境执行空气调节运行。

而且,由于在控制压缩机内的容量变化单元之后切换运行模式,其中该压缩机具有导向阀,该导向阀小且可靠并需要小的电力消耗,故采用这种压缩机的空调的安装位置能够处于舒适的状态,同时能够根据天气的负载执行最优的空气调节,从而降低年电力消耗。

而且,相比于利用变换器的能力控制方法,能够极大地降低单价,能够简化系统,以及能够提高其可靠性。

该可变容量型旋转式压缩机,可变容量型旋转式压缩机的运行方法,和具有可变容量型旋转式压缩机的空调的运行方法能够用于所有需要压缩机的装置,诸如空调,冰箱,橱窗等等。对本领域的技术人员显而易见的是,在不脱离本发明的精神或范围的情况下可对本发明做出多种改进和变动。因此,希望本发明包括在附加权利要求和其等效物的范围之内所提供的本发明的修改和变动。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号