首页> 中国专利> 在多辊式机架、尤其在20辊-森吉米尔轧机中对特殊钢带材或特殊钢箔材的平直度和/或带钢应力进行测量和调节的方法和装置

在多辊式机架、尤其在20辊-森吉米尔轧机中对特殊钢带材或特殊钢箔材的平直度和/或带钢应力进行测量和调节的方法和装置

摘要

用于在具有至少一个包括多个执行机构(3)的调节回路(4)的多辊式机架(2)中进行冷轧时对特殊钢带材(1)的平直度和/或带钢应力进行测量和调节的一种方法和一种装置,其保证进行更为精确的测量和调节,其具体方法是:通过一个应力矢量(8)与一条预先规定的基准曲线(9)之间的比较来检测出一个平直度缺陷(10),而后在带钢宽度(7)范围内在一个分析模块(11)中用数学近似法将所述平直度缺陷(10)的变化曲线分解为成比例的应力矢量(8),并且将所述通过实数数值确定的平直度缺陷分量(C1...Cx)分别输送给所属的调节模块(12a;12b),用于致动相应的执行机构(3)。

著录项

  • 公开/公告号CN1980752A

    专利类型发明专利

  • 公开/公告日2007-06-13

    原文格式PDF

  • 申请/专利权人 SMS迪马格股份公司;

    申请/专利号CN200580022734.9

  • 发明设计人 M·克鲁杰;O·N·杰普森;M·布鲁尔;

    申请日2005-06-17

  • 分类号B21B37/42;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人曹若

  • 地址 德国杜塞尔多夫

  • 入库时间 2023-12-17 18:46:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-07-07

    未缴年费专利权终止 IPC(主分类):B21B37/42 专利号:ZL2005800227349 申请日:20050617 授权公告日:20130724

    专利权的终止

  • 2013-07-24

    授权

    授权

  • 2007-08-15

    实质审查的生效

    实质审查的生效

  • 2007-06-13

    公开

    公开

说明书

技术领域

本发明涉及用于在具有至少一个包括多个执行机构的调节回路的多辊式机架、尤其20辊-森吉米尔轧机中进行冷轧时对特殊钢带材或特殊钢箔材的平直度和/或带钢应力进行测量和调节的一种方法和一种装置,其中在多辊式机架的出料口中通过一种平直度测量元件根据在带钢宽度范围内的带钢应力分布情况测量当前的带钢平直度。

所述的多辊式机架包括分裂结构形式或整体结构形式,其中上轧辊组和下轧辊组可以彼此独立地进行调整并且可以由此产生不同的机架框架。

背景技术

开头所述的方法在EP 0 349 885 B1中得到公开,并且该方法包括表征在轧机机架的出料侧的平直度、尤其是拉应力分布的测量值的形成,并且根据测量值致动轧机的执行机构,而所述轧机的执行机构属于至少一个用于已轧制的板材和带材的平直度的调节回路。现在为了降低轧机的执行机构的不同时间特性,按照所述公开的方法,使不同的执行机构的速度彼此匹配并且使其调节行程均匀化。但由此没有检测出其它的缺陷根源。

另一种公开的方法(EP 0647 164 B1)、一种用于为控制元件和用于工作辊的执行机构的调节器获得辊缝信号形式的输入信号的方法测量横向于带材的应力分布,其中从一个数学函数中得出平直度缺陷,具体方法是偏差的平方应该具有一个最小值,这通过一个矩阵求得,该矩阵具有测量点的数目、行的数目、基本函数的数目和测量点中辊缝的数目。该处理方式同样没有对在实践中出现的平直度缺陷及其本身的出现加以考虑。

发明内容

本发明的任务是根据更为精确地测量的和分析的平直度缺陷得到相应执行机构的变化的调节特性,用于由此实现最终产品的更高的平直度,从而也可以提高轧制速度。

按本发明,所提出的任务的解决方法是,通过一个应力矢量与一条预先规定的基准曲线之间的比较检测出一个平直度缺陷,而后在带钢宽度范围内在一个分析模块中用数学近似法将所述平直度缺陷变化曲线拆分为成比例的应力矢量,并且将所述通过实数数值确定的平直度缺陷分量分别输送给所属的调节模块,用于致动相应的执行机构。优点是以最小限度的断带率保证稳定的轧制过程并且由此提高可以实现的轧制速度。此外,通过平直度执行机构与变化的条件的自动匹配,即使在误设置情况下也减轻了操作人员的负担。此外,不依赖于操作人员的能力实现始终如一的产品质量。此外,可以事先节省时间地计算影响函数并且计算控制函数。平直度调节系统作为整体相对于在经过计算的控制函数中的不准确性变得稳定。在对投产没有影响的情况下保留不准确性。平直性缺陷最重要的分量由最大可能的调节动态性予以消除。应力矢量的正交分量相互之间线性无关,由此排除分量彼此间的相互影响。标量平直度缺陷分量被输送给单个的调节模块。

在本发明的改进方案中,通过一种高斯-八阶近似(LSQ方法)对平直度缺陷在带钢宽度范围内的变化曲线进行近似,并且随后分解成正交分量。

对一个残余缺陷矢量进行分析并且将该残余缺陷矢量直接接入所选出的执行机构中,以此产生本发明的一项改进方案。所有在高动态性的调节过程之后残留的可以用给定的影响函数进行影响的平直度缺陷由残余缺陷消除机构在可支配的调节范围的框架内予以消除。因此,优选除了所述平直度缺陷的上述正交分量之外,还应该对一项不是输送给所描述的正交分量、而是直接输送给所述执行机构的残余缺陷加以考虑。

在其它步骤之后,可以通过从偏心轮执行机构的影响函数中推导出来的并且将所有等候处理的平直度缺陷对应于所述单个偏心轮的加权函数来配设残余缺陷矢量。

其中还优选从所述对应于偏心轮的残余缺陷矢量中通过求和形成一个由实数数值确定的缺陷大小。

按照另一种改进方案,单独地在平直度调节的范围内为带钢边缘进行调节。由此,如果不是强制需要这样的调节,那就可以在必要时也完全切断这样的调节。

另一种改进方案在于,作为用于边缘应力调节的执行机构使用里面的中间压辊的水平移动机构。

为此,如此提出一项改进方案,从而通过边缘应力调节单独地为每个带钢边缘在一个平直度测量辊的一个到两个最外面的覆盖区域的范围内对预先设定的带钢应力进行调节。

按照其它特征,所述边缘应力调节对所述两条带钢边缘来说可选异步或同步运行。

其中,可以通过在所述平直度测量辊的两个最外面测量值的调节差异之间的差异形成单独地为每条带钢边缘来确定所述用于边缘应力调节的调节量。

按所说明的现有技术,用于在多辊式机架尤其在20辊森吉米尔轧机中对用于冷轧运行的特殊钢带材或特殊钢箔材的平直度和/或带钢应力进行测量和调节的装置具有至少一个用于执行机构的调节回路,这些执行机构包括液压调整机构、外部的支承辊的偏心轮、可轴向移动的内部的锥形中间轧辊和/或其影响函数。

开头所提出的任务因此在装置技术上通过以下方法得到解决:一个在基准曲线和平直度测量元件的当前带钢平直度之间的比较信号在调节回路的输入端连接到一个第一分析仪器以及用于形成应力矢量的独立的第一和第二调节模块上,并且以输出端连接到所述用于轧辊组的可回转的液压调整机构的执行机构上,并且该比较信号还并行地连接到一个第二分析仪器上和另一个单独的第二调节模块上,该第二调节模块的计算结果可以通过控制函数用一个耦合接头传输给所述偏心轮的执行机构。由此可以在装置技术上实现所述方法带来的好处。

本发明的另一种改进方案在于,所述在基准曲线和当前带钢平直度之间的比较信号通过独立的分析仪器连接到用于一个平直度残余缺陷的独立的第三调节模块上,该调节模块的输出端导引到由所述偏心轮作用于所述执行机构的耦合接头上。

一种在该意义上承续本发明的改进方案在于,所述在基准曲线和当前带钢平直度之间的比较信号通过另一个独立的第三分析仪器连接到一个独立的用于控制边缘应力调节的第四调节模块上,并且该调节模块的输出端连接到所述里面的锥形中间轧辊的执行机构上。

将一个布置在出料口中的平直度测量元件连接到当前带钢平直度的信号线上,以此支持准确地产生信号。

如此构造另一种发明方案,即为每个平直度缺陷矢量设置一个动态的单个调节器,该单个调节器作为PI调节器在输入端配有死区(Totband)。

按照另一种改进方案,在并联线路中在每个单个调节器前面除了所述第一分析仪器外还设置适应性的参数确定机构和一个控制显示器。

此外,在每个单个调节器上设置用于调节参数的接头也十分有利。

此外,所述动态的单个调节器可以与一个操纵台相连接。

与所述方法步骤的另一类似之处在于,为消除残余缺陷,所述残余缺陷矢量通过残余缺陷调节器分别与偏心轮的执行机构共同作用。

在带钢边缘上的测量的不准确性在装置技术上通过以下方法得以解决:分析仪器为平直度测量辊的不同带钢边缘区域进行边缘应力调节,在该分析仪器上相应连接了两个带钢边缘调节仪器。

在该布置方式的改进方案中,所述带钢边缘调节仪器与所述锥形中间轧辊的执行机构相连接。

由此,可以彼此独立地连接所述带钢边缘调节仪器。

最后,在所述两个带钢边缘调节仪器上分别连接一个适应性的调节速度调整机构和一个控制显示器。

附图说明

本发明的实施例在附图中示出,并且下面借助于附图详细解释。其中:

图1示出了一台20辊-森吉米尔轧机的设备配置,

图2示出了分裂结构形式的轧辊组的截取部分放大图,该轧辊组带有用于平直度执行机构的定位机构,

图3以偏心轮对辊缝轮廓的影响函数示出了辊缝/带钢宽度图,

图4示出了由于锥形中间轧辊移动的影响在带钢宽度范围内辊缝的变化图,

图5A示出了关于平直度残余缺陷的图表(在带钢宽度范围内的带钢应力),

图5B示出了平直度残余缺陷与单个偏心轮之间的对应关系图,

图6示出了关于20辊-森吉米尔轧机的平直度调节的总体方框图,

图7示出了关于Cx-调节的结构方框图,

图8示出了关于残余缺陷消除机构的结构的方框图,并且

图9示出了关于边缘应力调节机构的结构的方框图。

具体实施方式

按照图1,在一个多辊式机架2中,在一个20辊-森吉米尔轧机2a中,通过滚压、轧制和卷取对特殊钢带材1或特殊钢箔材1a进行轧制。其中,轧辊组2b构成一种分裂结构形式。所述上轧辊组2b可以通过一个执行机构3和其它的函数进行调节。在一个调节回路4(图6-9)中对有待说明的信号进行处理。这些信号在轧制过程之前来自进料口5a,并且在轧制后来自出料口5b,并且通过平直度测量元件6来获得,这些平直度测量元件6在该实施例中由平直度测量辊6a构成。

在图2中,为上面的轧辊组2b示出了一个作为执行机构的液压调整机构17。为影响带钢平直度,作为执行机构3,所述液压调整机构17可以回转(仅仅应用在分裂结构形式中)、所述外面的支撑辊18(A、B、C、D,其中支撑辊A和D比如装备了一个偏心轮14a)的一个偏心轮执行机构14可供使用,以及里面的锥形中间轧辊19可以轴向移动。

通过所谓的“影响函数”来表征出所述偏心轮调节的调节特性。所述外面的支撑辊18中的两个或更多的支撑辊分别配有4到8个在辊身宽度范围内布置的偏心轮14a,这些偏心轮14a可以分别借助于一个液压活塞-液压缸-单元而扭转,由此可以影响所述辊缝轮廓。所述里面的可以通过一个液压移动机构进行水平移动的锥形中间轧辊19在带钢边缘15的范围内拥有一个圆锥形薄片。该薄片在所述两个上锥形中间轧辊19的情况下位于多辊式机架2的操作侧,而在下面的锥形中间轧辊19的情况下则位于驱动侧(或者相反)。由此,可以通过相应两个上和下锥形中间轧辊19的同步移动来影响在所述两个带钢边缘15的其中一个带钢边缘上的应力。

在图3中,为该实施例的所述八个可调节的偏心轮14a中的每一个说明了在带钢边缘15之间带钢宽度7的范围内辊缝轮廓的相关变化。

相应的对锥形中间轧辊-移动位置对所述辊缝轮廓的影响进行说明的影响函数在图4中同样在直到带钢边缘15的带钢宽度7的范围内得到说明。

将平直度缺陷矢量分解成应力σ(x)的正交多项式,这就在相应分析中导致单位为N/mm2的C1(一阶)、C2(二阶)、C3(三阶)和C4(四阶)。

残余缺陷与单个偏心轮之间的对应关系作为平直度残余缺陷26(在通过Cx-调节进行调节干涉之后残留的平直度缺陷)以在带钢边缘15之间在带钢宽度7范围内的带钢应力(N/mm2)由图5A获得,并且在图5B中示出了加权函数,该加权函数用于根据在带钢边缘15之间的带钢宽度7对所述单个偏心轮14a的平直度残余缺陷26进行评估。

从图6中可清楚地看出该方法:通过平直度测量辊6a根据带钢应力分布(在带钢宽度7范围内离散的带钢应力测量值)在多辊式机架2的出料口5b中测量当前带钢平直度,并且存放在一个应力矢量8中。在计算平直度缺陷10(调节差异)的应力矢量8之后,将其从由操作者预先设定的基准曲线9(理论曲线)中减去。在带钢宽度7的范围内的平直度缺陷10的变化曲线在一个分析模块11中通过一种高斯-8阶近似(LSQ方法)进行近似,并且随后分解成正交分量C1...Cx。所述正交分量彼此线性无关,由此不会产生所述分量彼此间的相互影响。标量平直度缺陷分量C1、C2、C3、C4以及必要时其它的平直度缺陷分量通过一个第一分析仪器11a输送给一个第一和第二调节模块12a和12b。相应地,所述第二和第三分析仪器11b和11c与所述调节模块12c以及一个第四调节模块12d相连接。

具体来讲,流程如下:在调节回路4的输入端23上将基准曲线9和平直度测量元件6的当前带钢平直度22之间的一个比较信号20连接到一个第一分析仪器11a上,并且连接到一个独立的用于形成应力矢量8(C1...Cx)的第一调节模块12a上,并且以输出端24连接到用于轧辊组2b的液压式调整机构17的相应执行机构3上。此外,所述第一分析仪器11a的输出信号到达所述第二调节模块12b处。来自控制函数21的计算结果(f)通过一个耦合接头25传输给所述偏心轮14a的执行机构3。在所述基准曲线9和当前带钢平直度22之间的比较信号20通过所述独立的分析仪器11b连接到所述独立的用于平直度残余缺陷26的第三调节模块12c上,该第三调节模块12c的输出端27则导引到由偏心轮14a作用于所述执行机构3的耦合接头25上。

此外,在图6中示出,所述在基准曲线9和当前带钢平直度22之间的比较信号20通过另一个独立的第三分析仪器11c连接到一个独立的用于控制一个边缘应力调节机构16的第四调节模块12d上,并且该第四调节模块12d的输出端28连接到所述里面的锥形中间轧辊19的执行机构3上。在出料口5b中,借助于当前带钢平直度22的信号线连接了一个平直度测量辊6a。

其中,除了平直度缺陷10的上述分量以外还应该对一种不是对应于上述正交分量、而是直接对应于偏心轮14a的残余缺陷加以考虑,这样做是切实可行的。按照图5B用加权函数进行这种对应,这里的加权函数从偏心轮影响函数中推导出来并且将所有等候处理的平直度缺陷矢量对应于单个的偏心轮14a。随后,由所述对应于偏心轮14a的残余缺陷矢量14通过求和形成一个标量缺陷大小,并且分别通过一个调节模块12d将其对应于所述偏心轮14a。

在所述高动态性的调节回路29中,为平直度缺陷矢量(图7)的每个正交分量设置一个动态的单个调节器30,该单个调节器30作为PI调节器31在输入端32中设有死区。除了所述第一分析仪器11a之外,在每个单个调节器30之前在并联线路中布置了适应性的参数确定机构33和一个控制显示器34。在每个单个调节器30上,为调节参数Ki和Kp设置了接头35。必要时,应该将所述动态的单个调节器30与一个操纵台36相连接。

所述用于C1分量(倾斜位置)的单个调节器30在分裂结构形式中用于调节到液压式调整机构17的回转-额定值,在整体结构形式中用于调节到作为调节量的偏心轮调节状态。所述用于所有其余分量(C2、C3、C4以及必要时更高的阶次)的单个调节器30用于调节到所述外面的支撑辊18的偏心轮执行机构14上。使用所述控制函数21,用于将所述由单个的动态的单个调节器30提供的标量调节量对应于所述偏心轮14a。这些控制函数21将一种C1-、C2-、C3-...-调节运动转换为所述单个偏心轮-调节运动的一种相应的组合。已提到的去耦合确保比如C2-调节器30的调节运动不影响到除C2-分量以外的其余正交分量。根据带钢宽度7并且根据活动的偏心轮14a的数目,事先从所述影响函数来计算所述相应的控制函数。根据执行机构动力和轧制速度,所使用的PI调节器拥有适应性的参数确定机构33,并且由此为所有工作范围保证实现理论上可能的最佳调节动力。除此以外,按照数值优化方法所选择的调节参数Ki和Kp的计算方法实现了一种非常简单的调试过程,因为仅仅通过一个参数从外面对所述调节动力进行调节。利用所述高动态性的单个调节器30,根据轧制速度,实现了低于1秒钟的调节时间。

其中有一些缺陷分量,没有为这些缺陷分量设置单个调节器30,对这些缺陷分量来说所属的单个调节器30已切断,或者其中有这样的缺陷分量,它们由在所计算的控制函数中必然的不准确性比如由缺少去耦合所引起,按照图8对所述这些缺陷分量加以考虑。这样出现的缺陷分量当然无法由所述正交分量的高动态性单个调节器30予以消除。尽管如此,所述平直度调节方法包括一种残余缺陷消除机构(图8),用于消除这样的缺陷分量。残余缺陷消除机构用于使偏心轮14a作为执行机构3而工作,并且凭借上述缺陷分析提供原则上消除所有特定的平直度缺陷的可能性,在这样的平直度缺陷上由于给定的执行机构特征可以做到这一点。由于在所述单个偏心轮14a之间保留着的耦合并且由于可能的与所述正交分量的高动态性调节之间的相互作用,应该只用一种比较低的动力来运行所述残余缺陷调节机构。而该残余缺陷调节机构则以偏心轮14a的一种可确定参数的恒定的调节速度为依据,从而该调节机构根据轧制速度和调节偏差实现更大一些的调节时间。与此相对应,为消除残余缺陷,将所述残余缺陷矢量13通过残余缺陷调节仪器37、38和39分别与偏心轮14a的执行机构3相连接。

在平直度调节范围内单独处理所述带钢边缘15,用于在考虑到带钢边缘15上的应力的情况下,对所述20辊机架和薄型带钢轧制和箔材轧制的特殊重要性加以考虑(例如出现带钢裂纹,带钢运行)。作为执行机构3,使用所述里面的锥形中间轧辊19的水平移动机构。所述边缘应力调节机构16单独地为按照图9的每个带钢边缘15在所述平直度测量辊6a的一到两个最外面的被覆盖的区域范围内调节一种所期望的带钢应力。就象可从图9中看出的一样,单独为每个带钢边缘15通过在所述平直度测量辊6a的两个最外面的测量值的调节差异之间的差异形成来形成调节量。由此所述边缘应力调节机构16与所述基准曲线9无关,并且与所述平直度调节机构的其余分量脱耦。对所述边缘应力调节机构16来说,为所述平直度测量辊6a的不同的带钢边缘区域设置了一个分析仪器40,分别有两个带钢边缘调节仪器41和42连接到该分析仪器40上。所述带钢边缘调节仪器41、42与所述锥形中间轧辊19的执行机构3相连接。所述带钢边缘调节仪器41、42可彼此独立地接通。此外,在所述两个带钢边缘调节仪器41、42上分别连接了一个适应性的调节速度调整机构43和一个控制显示器44。所述边缘应力调节机构16可以由此可选异步地(对两个带钢边缘15来说独立地运行)或者同步地运行。该边缘应力调节机构16的动力受到所述锥形中间轧辊-水平移动机构的允许移动速度的影响,该移动速度取决于轧制力和轧制速度。

附图标记列表

1     特殊钢带材

1a    特殊钢箔材

2     多辊式机架

2a    森吉米尔轧机

2b    轧辊组

3     执行机构

4     调节回路

5a    进料口

5b    出料口

6     平直度测量元件

6a    平直度测量辊

7     带钢宽度

8     应力矢量

9     基准曲线

10    平直度缺陷

11    分析模块

11a   第一分析仪器

11b   第二分析仪器

11c   第三分析仪器

12a   第一调节模块

12b   第二调节模块

12c   第三调节模块

12d   第四调节模块

13    残余缺陷矢量

14    偏心轮执行机构

14a   偏心轮

15    带钢边缘

16    边缘应力调节机构

17    液压式调整机构

18    外面的支撑辊

19    锥形中间轧辊

20    比较信号

21    控制函数

22    当前的带钢平直度

23    调节回路的输入端

24    调节回路的输出端

25    耦合接头

26    平直度残余缺陷

27    第三调节模块的输出端

28    第四调节模块的输出端

29    高动态性的调节回路

30    用于正交分量的动态的单个调节器

31    带死区的PI调节器

32    输入端

33    适应性的参数确定机构

34    控制显示器

35    接头

36    操纵台

37    残余缺陷调节仪器

38    残余缺陷调节仪器

39    残余缺陷调节仪器

40    用于不同的带钢边缘区域的分析仪器

41    带钢边缘调节仪器

42    带钢边缘调节仪器

43    适应性的调节速度-调整机构

44    控制显示器

去获取专利,查看全文>
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号