首页> 中国专利> 对人类颜色感知的补偿

对人类颜色感知的补偿

摘要

用于补偿或预测人类颜色感知的漂移的方法、组合或设备,所述漂移发生在比较颜色在小表面区域上观察和铺展在大表面区域上观察时。通常以特定方式增加(补偿)或减少(预测)该颜色的明度和彩度来进行补偿或预测。本发明允许选色人员在选择颜色时考虑到所述漂移,本发明适用于为涂料、塑料、织物或被照亮的表面选择颜色。

著录项

  • 公开/公告号CN1813173A

    专利类型发明专利

  • 公开/公告日2006-08-02

    原文格式PDF

  • 申请/专利权人 帝国化学工业公司;

    申请/专利号CN200480018234.3

  • 发明设计人 M·R·罗;K·肖;C·李;

    申请日2004-04-29

  • 分类号G01J3/46(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人韦欣华;李连涛

  • 地址 英国伦敦

  • 入库时间 2023-12-17 17:33:59

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-06-29

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G01J3/46 变更前: 变更后: 申请日:20040429

    专利权人的姓名或者名称、地址的变更

  • 2016-06-29

    专利权的转移 IPC(主分类):G01J3/46 登记生效日:20160612 变更前: 变更后: 申请日:20040429

    专利申请权、专利权的转移

  • 2012-05-09

    授权

    授权

  • 2006-09-27

    实质审查的生效

    实质审查的生效

  • 2006-08-02

    公开

    公开

说明书

本发明涉及对人类对颜色的感知发生的漂移进行补偿的方法,该漂移发生在当初始作为小颜色样品(即,仅仅具有小面积的样品,比如80mm×80mm或更小)被感知的颜色随后在大表面积(比如4m×3m或更大的面积)上被感知的时候,所述大表面积比如墙壁表面或者房间天花板或者大区域的陶瓷、塑料或织物材料。或许下面这种说法有些随意:当大脑感知小面积有色表面比如小的颜色样品时,它认可该感知的颜色为该表面的“真实”颜色,而且这种人类感知和由科学仪器确定的该表面颜色的一致性相当好。不管表面是小面积还是大面积,科学仪器都会记录下它的真实颜色,但是当有色表面是大表面时,大脑会将其颜色感知成不同的颜色。该不同的颜色被称为“漂移的颜色”。

甚至在通过科学仪器确定了有色表面的小表面和大表面都由绝对相同的材料组成时,人类感知也会发生漂移。换句话说,发生改变的是人类对颜色的感知,而不是有色材料。如果人们开始是在小颜色样品(例如,涂料销售册、布料目录或其它颜色样品集)上做的选择,那么这种人类感知漂移导致他们对自己为大面积(例如,墙壁、天花板或窗帘)选择的颜色感到不满意,因为几乎最有经验的选色人员也无法预期这种漂移。

职业选色人员(比如,建筑师、内部装饰人员、织物设计人员和车辆设计师)通常称作“职业颜色专家”。相反,普通大众选色人员称作“无经验选色人员”。

本发明还涉及对上述人类颜色感知漂移的预测方法。本发明进一步涉及便于实施上述方法的设备。

本发明另一方面涉及阐述当小颜色样品的颜色扩展到大表面时人脑是如何感知该颜色的方法,并涉及用于阐述颜色漂移的方法中的载体和一种或多种所赋予的第二颜色的组合。

无经验选色人员通常从含有多达约100个小颜色样品的销售册选择颜色,而职业颜色专家通常从含有约700-超过6000个小颜色样品的颜色样品商业集子中选择。在这种集子中颜色样品的颜色由名称、代码或密码标记,该密码标记涉及该样品的真实颜色而不是任何漂移的颜色。

通过印刷来精确一致地重现颜色样品需要使用昂贵的高级墨水,因此墨水成本以及常规提供的大量样品导致大多数印刷的颜色样品很小。所以,尽管可以得到大到A4大小的商业颜色样品,但是大多数颜色样品覆盖100-3000mm2的小面积,因此无经验选色人员和职业颜色专家正常情况下都被迫采用仅仅具有小面积的颜色样品进行颜色选择。为了方便,这些小颜色样品应该小到当位于眼睛正常阅读距离(如300mm)时,在不大于约4°立体视角内可见。位于距离眼睛300mm处的12mm×18mm的样品,对着的立体角为约2°。当立体角增加到10°以上时可以察觉到人类感知漂移,当立体角增加到20°以上时,漂移变得非常明显。立体角约90°时达到了最大的舒适视场,因此需要更大立体视角的外部面积整体看起来不舒服,而且虽然这种外部面积可以具有心理学影响但却不会显著影响对该颜色的生理学感知。

有色陶瓷和塑料的商业样品通常以小片集的形式提供。织物或纸张颜色的商业样品通常以布料或纸张小样片集的形式提供。当片和样片成集时,就会变得庞大而笨重,不方便使用,除非它们面积小。

职业专家采用的涂料和类似涂层组合物,比如清漆和显纹漆,的小颜色样品的商业集通常含有小至12mm×18mm的颜色样品,比如在1986年出版的作为Swedish Standard SS 01 91 02得到的NCS ColourAtlas中可以找到。小颜色样品通常在比如NCS Atlas的书中,或者在比如得自Scandinavian Colour Institute of Stockholm的NCS Index的包含于扇形卡片组中的数据库中印刷和提供。商用小面积样品集也出现在其它图集、其它扇形卡片组和Akzo Colour Bank中,其中所述图集包括可得自ICI Paints of Slough,England的1992年出版的“The MasterPalette Atlas”,所述卡片组包括同样得自ICI Paints,British StandardFan Deck BS5252F:1976的“Dulux”“Colour Palette”扇形卡片组,所述Akzo Colour Bank据信可得自Crown Paints of Darwen,England。其它商用标准颜色集包括RAL Farbvorlagen或“Pantone”颜色,前者是Deutsches Institut für Gütesicherung und KennzeichnungEV,Sankt Augustin,Germany制备的数据库,后者是PantoneIncorporated,Carlstadt,New Jersey,USA制备的数据库。最后,还有Munsell颜色数据库。上述图集、扇形卡片组和数据库的内容在此引入作为参考。

现在已经发现,人类颜色感知发生漂移有两个主要原因。首先,当颜色扩展在大表面(比如,面积为4×3米的墙壁)上时,该颜色将承受直接来自光源(通常是日光或白色光源)以及来自相邻表面比如房间里相邻墙壁或天花板的发射光的混合照明。当颜色铺展在大面积上时,混合照明导致人类对颜色感知的显著漂移,但是已经发现当颜色仅仅铺展在小面积上时,混合照明不会引起显著的人类颜色感知漂移因而该颜色能够可靠地以其真实颜色被感知。

混合照明还导致大面积颜色的不同区域在人眼睛看来不同,即使整个面积被赋予了同一有色材料。这些区域并列在一起,使人脑对生理上注视的事物的心理理解变得复杂化,从而导致对该颜色的直觉心理综合,这种直觉心理综合随后增加了最终人类对颜色感知的漂移。

颜色漂移问题发生的第二个原因在于小面积颜色样品在2°立体视角内完全可见,所以通过仅仅人眼睛的敏感窝就可以看见。如果要充分观察铺展在大得多的区域上的颜色,通常要求立体视角大于20°,最大达到约90°。在这样较大的立体角范围,使用视网膜其它部分的周边视觉就对眼睛对颜色的视觉而言变得很重要。这些视网膜的其它部分具有不同的灵敏度,因此它们参与到视觉中来导致对颜色的生理感知发生进一步漂移。

职业颜色专家发展了(可能是潜意识地)直觉性而非指导性的个人经验和经历,使他们具有目测他们感知的颜色将漂移的程度的能力,所述漂移发生在当颜色铺展在小面积上他们感知的真实颜色和当颜色铺展在大面积上他们感知的漂移颜色之间。但是即使这样,大面积的尺寸可能从例如私人住宅小房间的5m2变化到公共建筑门厅壁的成千上万平米。这么宽的面积变化导致混合照明的程度极其不同,从而导致即使职业专家在可靠地目测这些漂移上也有困难,如果他们的目测没有指导的话。更成问题的是,如果是由无经验选色人员选择颜色,其中该选色人员没有专门的根据小颜色样品集选色的经验,那么感知漂移是完全不可预期的,因为该无经验的选色人员不可能记住以前已经有过漂移的经验。

上述对人类颜色感知漂移的新见解建立了以下内容:即漂移原因部分是物理上的,因为混合照明;部分是生理上的,因为视网膜灵敏度的变化;部分是心理上的,因为没有经过训练的大脑设法仅仅感知一种颜色。生理和心理原因意味着补偿和/或预测漂移的尝试不能仅仅依靠科学仪器,而必须在某种层面上涉及由正常色觉的人进行的判断。本发明的目标是提供对当真实颜色铺展在大表面积上时发生的人类颜色感知漂移的补偿方法,从而在由于是采用小颜色样品进行颜色选择而产生预期时,使颜色如同所预期的那样被人脑感知。尽管涉及到人类判断,但已发现本方法提供了一致性的方式来考虑人类颜色感知的这些漂移。本发明另一目标是提供对人类颜色感知的这些漂移的预测方法。进一步目标是提供便于实现上述方法的装置。还一个目标是提供不同小颜色样品的组件,从中可以进行颜色选择,其中对该组件的每种颜色该组件或者指明了如何对人类感知漂移进行补偿,或者预测了待预期的漂移量,或者两者都可。

颜色通常根据其CIELAB明度值L*、CIELAB彩度C*和CIELAB色调值h定义。“CIE”代表Commision Internationale del’Eclairage,其CIELABL*、C*和h值众所周知而且广泛使用。“明度”,L*,是从表面反射的光量的衡量手段,“彩度”,C*是颜色强度的衡量手段,即要么是浅色要么是深色或者两者之间的程度。“色调”,h,是颜色红、黄、绿或蓝的程度的衡量手段。

因此,本发明提供了对人类颜色感知发生的漂移进行补偿的方法,所述漂移在某颜色初始作为小颜色样品感知随后铺展在大表面积上进行感知时发生,其中该方法包括

a)获取小颜色样品颜色(即样品真实颜色)的CIELAB明度值Ls*和CIELAB彩度值Cs*

b)选择色调和所述小颜色样品色调相似的第二颜色,其中该第二颜色的CIELAB明度值和彩度值Lu*和Cu*分别小于Ls*和Cs*,但Lu*位于图2所示的阴影区,Cu*位于图3所示的阴影区,和

c)将第二颜色赋予该大表面积

从而,由于人类感知的漂移,当赋予该大表面积时,该第二颜色被人脑感知为和该小颜色样品的颜色可接受地相似。简而言之,即使所赋予的第二颜色的真实Lu*和Cu*值小于Ls*和Cs*,但是它被感知成具有小颜色样品的预计值Ls*和Cs*,结果是,选择和赋予第二颜色可接受地补偿了感知上的漂移。优选第二颜色的CIELAB色调值和小颜色样品的颜色的真实色调值的差别应该不超过5%,更优选小于3%,可能时应该相同。

本发明主要是根据采用明度、彩度和色调值L*、C*和h的操作来描述的,因为这些值精确定义了颜色,而且比采用其它可能参数,比如CIE三刺激值XYZ、CIEL*a*b*值、L*u*v*值或RGB值,的定义更容易直观理解。但是,如果需要,本发明可以修改后适用于这些其它参数,因为实质上所需的是对明度和彩度的任何精确定义。而且,该修改会产生更复杂的数学关系,并要求对图2、3和4进行相应的修改。

L*、C*、h和所有这些其它参数之间存在着精确的关系,比如

L*=116(Y/Yn)1/3-16和

>>>C>*>>=>>>(>>a>>*>2>>>+>>b>>*>2>>>)>>>1>/>2>>>>>其中大多数情况下    a*=500[(X/Xn)1/3-(Y/Yn)1/3]

                b*=200[(X/Xn)1/3-(Z/Zn)1/3]

                h=tan-1a*/b*

                Xn,Yn和Zn

                CIELAB参考的光的三刺激值

所以,显然由L*、C*和h定义的性质都可以被这些其它相关参数相等地精确表达,但是增加了复杂性。

优选上述方法通过用下列步骤b(i)-b(v)代替步骤b来进行改进:

b(i)选择色调和小颜色样品色调相似的第二颜色,其中第二颜色具有CIELAB明度值和彩度值Lu*和Cu*,选择分别小于Ls*和Cs*的Lu*和Cu*值,其中该选择通过执行步骤b(ii)-b(v)进行,

b(ii)在图2中参照代表Ls*的水平轴,记下Ls*轴和图2所示阴影区域边界相交叉的任何点的坐标Lux*

b(iii)在图3中参照代表Cs*的水平轴,记下Cs*轴和图3所示阴影区域边界相交叉的任何点的坐标Cux*,然后

b(iv),或者:

如果记下了两个Lux*坐标,为Lu*选择位于这两者之间的某值,或者

如果仅仅记下一个Lux*坐标,为Lu*选择位于0和记下的Lux*坐标之间的某值,和

b(v),或者:

如果记下了两个Cux*坐标,为Cu*选择位于这两者之间的某值,或者

如果仅仅记下一个Cux*坐标,为Cu*选择位于40和记下的Cux*坐标之间的某值。

Lu*和Cu*的优选值位于上述极值对之间的30-70%距离处,其中可能的Lu*和Cu*应该在这两个极值之间大约等间距处,也就是说在极值之间的45-55%距离处。包括进上述优选值使所赋予的第二颜色的感知结果和初始感知的小样品的真实颜色更接近。Lu*和Cu*的最优选值分别位于图2的曲线23上和图3的线33上。

图2和3中的阴影区可以采用这种技术绘制:该技术采用了多个观察者(优选5-15)的人类判断,所有观者者具有正常颜色视觉,优选其视觉能够都通过Ishihara颜色视觉测试。

合适的绘制技术首先将多个(优选7-15)不同颜色顺序赋予大表面积。每个所赋予的颜色的真实(即没有漂移的)CIELAB明度值和彩度值称作Lu*和Cu*,它们应该已知或者随后确定,下面将进行解释。当某颜色被赋予大面积的表面时,通过下述方法确定其人类感知的(即漂移的)CIELAB明度值(Ls*)和彩度值(Cs*):要求每个观察者顺序根据自己的判断,将对该颜色明度和彩度值的感知和多个可能匹配的小颜色样品之一的明度值和彩度值相匹配,这些小颜色样品采用阴极射线光显示器或者可视柜(viewing cabinet)交替显示。(MonicaBillger在“Colour Research and Application”,2000年6月,卷25,No.3,第214-225页描述了合适的可视柜或“颜色参比盒(colourreference box)”,这些页的内容引入作为参考)。在显示器上显示的小颜色样品应该优选铺展在80平方毫米的面积上,对应观察者眼睛的立体角不大于约2°,而显示在可视柜上的略微大些(但仍旧很小)的颜色样品应该优选铺展在12mm×18mm的矩形面积上,应该对应不大于约10°的立体角。每个相匹配的小颜色样品的真实明度值和彩度值应该已知或者后续确定。

每个观察者从显示器或可视柜选择自己认为与对赋予大表面积的每种颜色的感知最匹配的小颜色样品。优选,观察者对每种赋予的颜色进行两次匹配,一次采用显示器,一次采用可视柜,从而事实上他们选择两个匹配颜色,这两个颜色非常相似,但是很少(如果有的话)恰好相同。采用人类观察者而不是只使用科学仪器进行匹配,使得能够考虑到造成人类颜色感知漂移的生理和心理因素。

该匹配的小颜色样品的真实明度值和彩度值用Ls*和Cs*表示,因为已经发现这些值是对它们匹配的所赋予颜色的漂移明度值和彩度值的极其好的近似,所述颜色由特定人类观察者感知。确定所有观察者所得所有结果的算术平均值。

优选应该通过在该大表面积的多于一个区域(比如3-7个区域)重复上述颜色感知的匹配程序,为混合照明效应提供改善的公差。

赋上颜色的区域的多个漂移明度Ls*和彩度Cs*的平均值(在匹配步骤得到),对这些颜色相应的真实(即没有漂移的)值Lu*和Cu*作图,绘制出图2或图3分别给出的阴影区的宽形式。

已经发现,当绘制漂移的色调角hs和真实(即,没有漂移的)色调角hu的关系时,所述曲线叠在或者非常靠近45°线,这表明色调实质上没有漂移。这意味着仅仅通过对小面积样品颜色的真实明度值和彩度值进行操作,就可以确定感知漂移程度,这是重要的发现,因为还发现当匹配的仅仅是明度和彩度时,人类观察者之间仅有很小的变化。相反,众所周知人类观察者在感知色调时变化很大。

如果需要测量,CIELAB明度值(L*)、彩度值(C*)和色调角(h)可以很容易通过它们的X、Y、Z三刺激值(单位是cd/m2,candela/m2)的测量结果以及上面引用的公式进行计算,其中三刺激值采用电-光谱辐射计例如Minolta CS 1000进行测量。但是,真实CIELAB值极可能已经知道了,因为所选颜色和/或匹配颜色通常属于许多已经创建的小颜色样品集之一,这些样品集或者直接引用CIELAB明度、彩度和色调值,或者给出相关参数,通过这些参数可以很容易计算出CIELAB明度和彩度值。

如果需要,通过参考白色表面当置于混合照明时经受的颜色漂移,可以进一步调整混合照明的影响。假定该白色表面的真实明度值基本上是100,真实彩度值基本上是0,光源是三刺激值为Xw、Yw和Zw的参比光源。当处于混合照明时,这种白色表面的三刺激值会漂移,为了描述,将漂移值记为Xx、Yy和Zz。通过Sueeprasan等在2001年的Proceedings of the 9th IS&T/SID Colour Imaging Conference的第316-320页所述程序,可以确定白色表面的漂移三刺激值Xx、Yy和Zz,这些页的内容在此引入作为参考。这个程序采用了下列Xx、Yy和Zz的定义:

Xx=fXw+(1-f)X,Yy=fYw+(1-f)Y和Zz=fZw+(1-f)Z

                    等式1

其中X、Y和Z是赋予该大表面积的颜色的真实三刺激值,即由科学仪器测量的值。常量“f”是在建模过程中数学优化确定的参数,在该建模过程中,选择了具有已知X、Y和Z值的多个颜色,根据经验测量了它们在两套不同混合照明下的Xx、Yy和Zz值,然后用所得结果创建用于等式1的模型,从中推导出最优值“f”。根据等式1计算出的Xx、Yy和Zz值然后可用来代替Xn、Yn和Zn,从而调节与漂移值Ls*和Cs*相关的CIELAB a*和b*值,使Ls*和Cs*的调节可以考虑到混合照明。

还优选通过采用两种或多种具有不同辐射的不同光源来改善该绘制程序,即使这样会使待绘制的Ls*和Cs*值的数目加倍。幸运的是,虽然表面反射的光能的量随着光源功率变化,但是光源功率不会导致人类感知的任何显著漂移,因为小面积和大面积反射的单位面积能量比并不改变,而大脑注视颜色漂移时理解的正是这个比值。

已经注意到,由本发明方法获得的结果的一致性至少部分由于四个主要因素。第一个因素是色调角没有漂移。第二个因素是不同人类观察者在感知明度和彩度时具有高度的一致性。第三个因素是已经发现的人眼睛和大脑应付照明强度变化的方式,第四个因素是缺乏对可归因于混合照明的对小颜色样品感知的任何影响。

查看图2所示不同漂移明度值Ls*和相应真实(即,没有漂移的)值Lu*之间关系的位置,发现在这些位置的散布存在着非线性趋势。这种趋势表明可能值得去尝试找到这些关系位置的“最佳拟合”曲线,该曲线可以用二次方程式表示。我们研究了下面二次方程形式的等式:

>>>>L>s>>*>>=>>α>L>>>>L>u>>>*>2>>>+>>β>L>>>>L>u>>*>>+>100>>(>1>->100>>α>L>>->>β>L>>)>>>>等式(2)

其中αL和βL是常量,通过下面的解释来确定。

显然,如果αL和βL已知,并且如果Lu*对某具体小颜色样品已知,那么等式2可以用来预测该颜色赋予大表面积时的漂移的CIELAB明度值。预测的值记为Lsp*,从而

>>>>L>sp>>*>>=>>α>L>>>>L>u>>>*>2>>>+>>β>L>>>>L>u>>*>>+>100>>(>1>->100>>α>L>>->>β>L>>)>>>>

因此,如果某颜色当被赋予大表面积时预计明度值为Ls*,那么为了对漂移进行补偿,必须赋予真实明度值为Lut*的颜色,其中

>>>>L>ut>>*>>=>>>->>β>L>>+>{>>>β>L>>2>>+>4>>α>L>>[>100>>(>1>->100>>α>L>>->>β>L>>)>>->>>L>s>>*>>]>>}>>1>/>2>>>>>2>>α>L>>>>>>等式(2a)

因此,如果某具体预计颜色的预计明度Ls*已知,那么等式2a可以用来预测和确定小颜色样品,其明度值Lut*在该小颜色样品的颜色被赋予大表面积时作为Ls*感知。

为了得到最佳拟合曲线并由此得到最佳αL和βL值,优选下面“最佳拟合”程序:

在优选的最佳拟合程序步骤1,选择第一对试验αL和βL值,代入等式(2)。然后,将赋予的颜色的已知真实明度值Lu*也代入等式(2),然后将该等式用来预测漂移值Lsp*。接下来,从选定颜色的预测值Lsp*中减去匹配小颜色样品的明度值Ls*,并对所得的差取平方,得到

(Lsp*-Ls*)2.

最佳拟合程序步骤2是对每个其它所赋予的颜色的相应真实和漂移明度值重复步骤1。步骤3是顺序采用αL和βL的多个猜测的可替换试验值之一来重复步骤1和2。步骤1-3一起为步骤l或2所用αL和βL的每个可替换试验值对得出了差值平方(Lsp*-Ls*)2的列表。构成列表的差的平方加在一起,得到该列表中所有差平方(Lsp*-Ls*)2的总和。认为总和最低的列表具有αL和βL的最佳拟合值,将这些值代入等式(2),然后约束等式(2)使其通过总明度Lsp*=100=Lu*的点。认为该约束曲线是最佳拟合曲线。对最佳拟合程序的较早重复实施导致αL的可接受可代替值范围为-0.007--0.0001,优选小于-0.0013,βL的可接受可代替值范围为0.8-1.5,优选0.75-0.95。

将αL和βL的优选上限值和下限值对代入等式2,分别得到图2所示的上面的和下面的二次方程曲线,该曲线限制了本发明实施中可用的漂移明度值的区域。

对图3所示各个预测的漂移彩度值Cs*和相应真实(即,未漂移的)值Cu*的关系位置的类似查看,发现在位置的分布中具有线性趋势。这种趋势表明可能值得去尝试找到这些关系位置的“最佳拟合”曲线,该曲线可以用线性等式表示。我们研究了下面形式的等式:

    Cs*=αCCu*                等式(3)

其中αc是常量,通过下面的解释来确定。

显然,如果已知αc,并且如果Cu*对某具体小颜色样品已知,那么等式3可以用来预测该颜色的漂移的CIELAB彩度值Csp*,即

    Csp*=αCCu*

因此,如果某颜色当被赋予大表面积时预计彩度值为Cs*(即,漂移值Cs*),那么为了对漂移进行补偿,必须赋予真实彩度值为Cut*的颜色,其中

>>>>C>ut>>*>>=>>>>C>sp>>*>>>α>C>>>>>等式(3a)

通过类似于确定αL和βL值所述的最佳拟合程序可以确定常数αc,但是用彩度值代替明度值,并且该线被约束通过总消色度Csp*=0=Cu*的点。对最佳拟合程序的重复实施导致αc的可接受可代替值范围为1-2.3,优选1.05-1.9。

将αc的优选上限值和下限值代入等式3,得到图3所示的上面的线和下面的线,该曲线限制了本发明实施中可用的漂移明度值的区域。

上述等式可以用来直接补偿上述人类颜色感知的漂移。相应地,本发明提供了补偿人类颜色感知的漂移的方法,所述漂移在颜色首先作为小颜色样品感知随后铺展在大表面积上进行感知时发生,其中该方法包括

a)获取小颜色样品的颜色(即,样品的真实颜色)的真实CIELAB明度值Ls*和CIELAB彩度值Cs*

b)选择色调和该小颜色样品色调相似的第二颜色,其中该第二颜色具有满足下式的CIELAB明度和彩度值Lu*和Cs*,其中

>>>>L>u>>*>>=>>>->>β>L>>+>{>>>β>L>>2>>+>4>>β>L>>[>100>>(>1>->100>>α>L>>->>β>L>>)>>->>>L>s>>*>>]>>}>>1>/>2>>>>>2>>α>L>>>>>>

>>>>C>ut>>*>>=>>>>C>sp>>*>>>α>C>>>>>

其中αL为-0.007--0.0001

βL为0.8-1.5,和

αc是1-2.3

c)将第二颜色赋予大表面积

从而,由于人类感知的漂移,当赋予大表面积时,该第二颜色被人脑感知为和小颜色样品的颜色可接受地相似。

本方法也可以逆向执行,从而能够预测当真实颜色(比如由小面积颜色样品显示的颜色)铺展在大表面积上时,人脑如何感知该真实颜色。相应的,本发明提供了预测人类颜色感知的漂移的方法,所述漂移在颜色首先作为小颜色样品感知随后铺展在大表面积上进行感知时发生,其中该方法包括

a)获取小颜色样品的颜色的真实CIELAB明度值Lu*和CIELAB彩度值Cu*

b)将该CIELAB明度和彩度值Lu*和Cu*提高到Ls*和Cs*值,后者分别位于图2和图3所示的阴影区,

从而,由于人类感知的漂移,增加的值Ls*和Cs*预测了当颜色铺展在大表面积上时被感知的明度和彩度。

本发明提供了预测人类颜色感知的漂移的替代方法,所述漂移在颜色首先作为小颜色样品感知随后铺展在大表面积上进行感知时发生,其中该方法包括

a)获取小颜色样品的颜色的真实CIELAB明度值Lu*和CIELAB彩度值Cu*

b)将该CIELAB明度和彩度值Lu*和Cu*提高到Ls*和Cs*值,其中

>>>>L>s>>*>>=>>α>L>>>>L>u>>>*>2>>>+>>β>L>>>>L>u>>*>>+>100>>(>1>->100>>α>L>>->>β>L>>)>>>>和

         Cs*=αCCu*

从而,由于人类感知的漂移,Ls*和Cs*预测了当颜色铺展在大表面积上时被感知的明度和彩度。

预测人类颜色感知中的这些漂移的能力使得可以将漂移图示化,优选和相应的小颜色样品一起提供,从而为职业专家和没有经验的选色人员展示当将小颜色样品的颜色铺展到大表面积上时他们将如何感知该颜色。因此,本发明提供了当小颜色样品的颜色铺展在大表面积上时,展示人脑将如何感知该颜色的方法,其中所述方法包括

a)使用上述方法预测小颜色样品的漂移明度值Ls*和彩度值Cs*

b)选择色调和该小颜色样品色调相似的第二颜色,其中该第二颜色具有明度和彩度值Ls*和Cs*,和

c)将小面积的第二颜色赋予载体装置

从而,载体装置和所赋予的第二颜色的组合提供了一种示例,示例小颜色样品的颜色当铺展在大表面积上时人脑如何感知该颜色。合适的载体装置包括纸张、卡片或电子装置比如阴极射线屏。

优选为了使用时更加方便,载体装置在第二颜色附近也携带小面积颜色的样品。相应地,本发明进一步提供了载体装置和有色材料的组合,该有色材料由载体携带并铺展在小面积上,其中该组合还包括第一颜色的小样品,而且有色材料的颜色是第二颜色的,其色调和第一颜色相似,但明度和彩度值Ls*和Cs*大于第一颜色的明度和彩度值Lu*和Cu*而且还分别位于图2和图3的阴影区内,从而当查看该组合中的样品颜色时,人类对第一颜色的生理和心理感知受到该有色材料的影响,导致对第一颜色的感知就像它铺展在大表面积上一样。或者,在该组合中,有色材料的明度值Ls*和彩度值Cs*可以由下式给出:

>>>>L>s>>*>>=>>α>L>>>>L>u>>>*>2>>>+>>β>L>>>>L>u>>*>>+>100>>(>1>->100>>α>L>>->>β>L>>)>>>>和

        Cs*=αCCu*

第一颜色可以显示在阴极射线屏上,但通常用印刷在卡片或纸张上的小面积颜色样品来体现。通常,每个样品配有其真实颜色的标记,优选该标记印刷在样品上或附近。例如,小面积颜色样品集可以买到,许多在上面都印刷了其真实明度和彩度值的标记。该标记可以是在标准CIE条件下确定的实际CIELAB明度值和彩度值的形式,但是商业可得的样品通常带有将颜色转换成更友好颜色定义符号的精确翻译,比如NCS密码或Colour/Master Palette密码或类似的密码。

当有色材料是屏幕上的能量敏感涂层时,载体装置可以是阴极射线管。载体装置还可以是有色材料印刷在其上的卡片或纸张。此时,有色材料可以方便地和其漂移颜色标记相关。使用时,载体装置和有色材料应该靠近小颜色样品,使得没有经验地选色人员可以很容易看到整个组合。然后,可以将漂移颜色的标记印刷在小样品颜色上,和其真实颜色的定义一起制成双标记样品。通过这种方式,参考该双标记样品来辅助选色的人员能够立刻发现需要漂移颜色来抵消感知颜色的漂移。

为了更加方便,载体装置可以携带多个小颜色样品,每个都带有相应的第二颜色,从而使整个商用范围内的颜色可以和其相应的第二或漂移颜色在例如条纹卡片、扇形卡片组、册子、陶瓷或塑料片组件或者织物样品书上显示出来或者在阴极射线屏上并排显示出来。从而使得用户可以看到和该颜色在大面积上显示时相同的实际小面积显示,在提醒没有经验的选色人员存在有漂移现象方面尤其有效。

工厂制造的有色涂料组合物通常以罐子形式供应,罐子大到足以容纳能够涂覆大表面积的涂料组合物。含有不同颜色涂料组合物的罐子通常形成集合,在商店或者销售店一起展示(例如并排),从而提供可替换的可选择颜色范围。本发明使这种集合中的每个罐子都可以充当载体装置的一部分,该载体装置携带了罐中涂料的漂移颜色的展示。通过这种方式,没有经验的选色人员可以从罐子上显示的漂移颜色作出选择,绝不需要关心真实的颜色。但是,当选色人员需要将颜色仅仅赋予小面积比如门把手时,则希望每个罐子也标记上它所含涂料组合物的真实颜色(干燥后),使得需要时选择选定颜色的人员能够知道真实颜色。真实颜色和漂移颜色的显示(例如小面积颜色样品)可以携带在罐子上,或者可替换地罐子或者其一部分可以是透明的或半透明的,从而通过该罐子可以看到其内含物(虽然是未干的状态)的颜色。集合可以和漂移颜色小面积样品集组合使用,其中颜色用其真实明度和彩度值标记。

对上述布置的修改包括显示一系列小面积样品颜色或者填充了有色材料的全部或部分透明的罐子,其中该系列中第二和后续样品既充当真实颜色样品,又为系列的前一个或后一个相邻成员充当漂移颜色的示例。例如,这种修改后的辅助手段可以包括色阶,顶部颜色是样品颜色,顶部颜色下面的颜色是它的漂移颜色。该下面的颜色也充当第二样品颜色,接下来下面的颜色是它的漂移颜色,如此沿着色阶向下顺沿。或者,底部颜色可以是第一个参比颜色,随着色阶的上升出现它的漂移色。申请人认为垂直色阶更容易直观理解,但是色阶也可以水平显示。

如果漂移颜色显示在通常由阴极射线管生成的房间示意图中,那么对没有专门颜色经验的普通大众而言,就会特别有帮助。在阴极射线管上显示使得颜色可以结合到房间的计算机可操作数字图像上,从而可以将真实颜色显示在模拟墙壁或天花板上,然后可以操作该图像来显示合适的漂移颜色。优选屏幕应该和距离300mm处的观察者成至少20°的立体视角。

本发明进一步提供便于对人类颜色感知漂移进行补偿的本方法的实施的设备,所述漂移发生在初始作为小颜色样品感知的颜色随后铺展在大表面积上感知时,其中所述设备包括

a)储存图2所示阴影区域的装置和储存图3所示阴影区域的装置,

b)储存或获取小面积样品颜色的CIELAB明度值Ls*和CIELAB彩度值Cs*的装置,

c)分别从图2和图3所示阴影区域中选择色调和小颜色样品色调相似的第二颜色的装置,其中所述第二颜色的CIELAB明度值Lu*和彩度值Cu*分别小于Ls*和Cs*,和

d)将选定的值Lu*和Cu*传送给该设备的用户的装置

从而传送对需要赋予大表面积的颜色的明度值Lu*和彩度值Cu*的预测,以使得人脑对该颜色的感知和初始感知的小颜色样品的未漂移明度值Ls*和彩度值Cs*的颜色可接受地相似。本发明还提供了便于本发明预测颜体颜色感知漂移方法实施的设备,所述漂移发生在初始作为小颜色样品感知的颜色随后铺展在大表面积上感知时,其中所述设备包括:

a)储存图2所示阴影区域的装置和储存图3所示阴影区域的装置,

b)储存或获取小颜色样品的CIELAB明度值Lu*和CIELAB彩度值Cu*的装置,

c)分别从图2和图3所示阴影区域中选择色调和小颜色样品色调相似的第二颜色的装置,其中所述第二颜色的CIELAB明度值Ls*和彩度值Cs*分别大于Lu*和Cu*,和

d)将选定的值Ls*和Cs*传送给该设备的用户的装置

从而传送当该颜色赋予大表面积时人脑对其感知的漂移明度值Ls*和彩度值Cs*的预测。在尤其优选的改动中,由该设备传送的颜色被传给涂料混色机,所述混色机就是将预定量的着色剂分散到中间色基涂料或者其它涂料组合物中,生成预选的颜色。

下面参考附图对用于绘制本发明实施中使用的阴影区的优选技术进行描述,其中

图1给出了模拟房间天花板、墙壁和地板的平面组件的透视图。

图2给出了采用配色技术确定的所选颜色的漂移明度值Ls*和所选颜色未漂移(真实)明度值Lu*的关系图。

图3给出了采用配色技术确定的所选颜色的漂移彩度值Cs*和所选颜色未漂移(真实)彩度值Cu*的关系图。

图4给出了采用配色技术确定的所选颜色的漂移色调角hs和所选颜色未漂移(真实)色调角hu的关系图。

图5给出了用来绘制图2和图3中所述区域的十二种颜色a*、b*值的CIEa*、b*图。

图6给出了漂移明度值Ls*和预测的漂移明度值Lsp*的关系图。

图7给出了漂移彩度值Cs*和预测的漂移彩度值Csp*的关系图。

图8给出了图2的早期版本,其中所述图采用仅仅10种颜色以及大于40的明度值绘制。

图9给出了图3的早期版本,其中所述图采用仅仅10种颜色和大于40的彩度值绘制。

图10给出了用来绘制图8和图9的10种颜色a*、b*值的CIEa*、b*图。

图11给出了漂移明度值Ls*和预测的漂移明度值Lsp*的关系图。

图12给出了漂移彩度值Cs*和预测的漂移彩度值Csp*的关系图。

绘制图2和图3所示阴影区域20和30的优选技术采用了图1所示的模拟房间1和12种不同颜色,所述颜色的CIELABa*和b*的定义如图6所示。

模拟房间1包括垂直平板大表面积或“墙壁”2、3和4、墙壁上面的水平表面或“天花板”5以及水平平面地板6,所述地板6覆盖有中灰色地毯,但没有示出。墙壁2和3长4m高3m,而墙壁4长3m高3m。所以墙壁2、3和4都提供了大面积表面,尤其是墙壁2,它和观察者7成大于50°的立体视角。模拟房间1,尤其是墙壁2采用安装在天花板5中心的D65白光灯9照明。灯9的色温是6427K。灯9的三刺激值是Xn=94.86、Yn=100、Zn=107.25。

采用用作底涂层类型溶剂基醇酸树脂涂料,新近为墙壁2、3和4以及天花板5涂上了无光泽白色(所以,具有强遮色能力)。让该涂料干燥至少16小时,然后将12种具有不同所选彩色或消色的涂料,顺次涂到白色墙壁2、3和4上。天花板5保持白色。这12种颜色的真实(即未漂移的)明度和彩度值Lu*和Cu*分别如图2和3所示。所选颜色的真实(即未漂移的)明度值和彩度值以及其色调角已知,所以无需确定。

墙壁2当顺序涂上每种所选颜色的涂料时,象征性分成了高6,长8的48个相等区域10。采用Minolta CS1000测量每个区域颜色的X、Y、Z三刺激值。发现区域10可以分成3个或者4个颜色基本均一的区域。请10个观察者7(所有观察者都能够通过关于正常人颜色视觉的Ishihara视觉试验)中的第一个顺序观察墙壁2的3个或4个区域中的每一个,然后将其对某区域颜色的感知和显示在阴极射线管11上的颜色进行匹配。阴极射线管11配有控制器12,从而可以交替显示不同明度、彩度和/或色调的颜色。设置阴极射线管11的白点,使其和灯9的白点相匹配。观察者7将该区域颜色和管11上显示的交替颜色相比较,直到其判断出找到了和观察区域颜色最可得匹配的匹配颜色。然后采用Minolta CS1000测量匹配颜色的三刺激值。这些值和赋到墙壁上的颜色的值等同,因此用它们计算所赋予颜色的漂移明度和彩度值以及漂移色调角。

对颜色基本均一的所有三个或四个区域,重复上述匹配程序,从而得到匹配颜色的明度值和彩度值,然后对其它11种可替换颜色的每一种进行重复,随后再用色温3820K的冷白荧光灯代替D65进行重复。这样获得了66-88个(取决于均匀颜色区域的数目)可能的明度、彩度和色调值。

然后重复整个程序,除了用可视柜代替阴极射线管,从而得到了成倍的读数。

可视柜顺序显示A6大小的NCS小面积颜色样品,这些颜色样品的三刺激值已知,并和观察者7成2°立体角。每个观察者7观看墙壁2的某个区域,将其和显示在柜子上的A6NCS颜色样品进行比较。如果偶然出现该颜色不是所感知的该区域的颜色的最佳可得匹配,则用该观察者判断其颜色更接近所感知的该区域的颜色的样品替换A6样品,如此反复直到找到满意的可得匹配。如果没有找到满意匹配的NCS样品颜色,选择两个经判断最接近所感知的颜色的NCS样品,然后用Minolta CS1000测量确定它们的三刺激值。对每一对三刺激值计算加权平均值,将该加权平均值认定为所感知的颜色的三刺激值。“加权平均”是指如果判断出所感知的颜色和第一颜色位置很近,比如在颜色空间中位于从第一颜色到第二颜色的25%距离处,那么认定的值将包括75%第一颜色的三刺激值和25%第二颜色的三刺激值的和。再次采用匹配颜色的三刺激值计算所赋予的颜色的漂移明度和彩度值以及漂移的色调角。

最后,对9个其它观察者7重复整个程序,对所有10个观察者找到的明度和彩度值进行算术平均。分别绘制漂移明度和彩度值,Ls*和Cs*,与所选颜色的真实(未漂移的)明度和彩度值,Lu*和Cu*,的关系,绘制结果分别如图2和3所示。

观察图2发现,绘制的散布图遵循着一个趋势,即从Lu*向着增加的明度值Ls*偏移,但是当明度值接近100时增加趋势变缓和。所以,绘制的结果给出了阴影区20,区域20由上面的基本二次曲线21和下面的基本二次曲线22限定。曲线23是最佳拟合曲线,是如早前解释的将Ls*和Lsp*的差值平方和最小化后得到的,但是约束该曲线使其通过总明度Ls*=100=Lu*的点。最佳拟合曲线具有下面的等式

>>>>L>s>>*>>=>>α>L>>>>L>u>>>*>2>>>+>>β>L>>>>L>u>>*>>+>100>>(>1>->100>>α>L>>->>β>L>>)>>>>

其中αL是0.00125,βL是0.913。

图2中的水平线24示出了代表Ls*=82的水平轴,它在点25处通过阴影区20的边界。这意味着Lu*的有用值位于线24上的点25之间。该轴在点26处通过最佳拟合曲线23,得到Lu*的最优值72.5。这整个操作可以逆向执行,采用例如表示Lu*=72.5的垂直轴得到真实明度值为72.5的小样品颜色的预计漂移值Lsp*

观察图3发现,绘制的散布图遵循着一个趋势,即从Cu*向着增加的彩度值Cs*偏移。当该值接近0时增加趋势变缓和。图3中,绘制的结果给出了三角形阴影区30,由上面的线31和下面的线32限定。线33是最佳拟合曲线,是如早前解释的将Cs*和Csp*的差值平方和最小化后得到的,但是约束该线使其通过总消色度Csp*=0=Cu*的点。最佳拟合曲线具有等式

         Cs*=αCCu*其中αc是1.358。

图3中的水平线34示出了代表Cs*=44的水平轴,它在点35处通过阴影区30的边界。这意味着Cu*的最有用值位于线34上的点35之间。该轴在点36处通过最佳拟合曲线33,得到Cu*的最优值33。这整个操作可以逆向执行,采用例如表示Cu*=33的垂直轴得到真实彩度值为33的小样品颜色的预计漂移值Csp*

观察图4,发现色调,h,的绘制结果主要位于45°线40上,这证实当将选定颜色赋予大面积时,感知的色调偏移非常小。

为了评价预测的明度值和彩度值的精确度,采用明度和彩度最佳拟合曲线等式来预测多个选定颜色当赋予大表面积上时的漂移明度值和彩度值,Lsp*和Csp*。将选定的颜色顺序涂到底涂层为白色的墙壁2上,采用上述优选匹配技术确定其实际感知的明度值和彩度值Ls*和Cs*。然后绘制这些预测的漂移值Lsp*和Csp*和得自匹配颜色的实际值Lsp*和Csp*的关系。绘制结果见图6和7。

图6和7表明绘制结果靠近45°线60和70,这表明测得的漂移值和采用最佳拟合等式预测的漂移值之间有很好的相关性。

图8给出了图2的早期版本,获得方式和图2精确相同,除了仅仅采用了图10指定的10种颜色而且所有颜色明度值大于40以外。所得曲线的精确度较差,但图11表明预测的漂移明度值和测量的漂移明度值吻合很好。

图9同样给出了图3的早期版本,获得方式和图3精确相同,除了仅仅采用图10指定的10颜色而且所有颜色彩度值大于10以外。所得曲线不再是直线,但是图12仍表明预测的漂移明度值和测量的漂移明度值吻合很好。所述曲线满足等式:

>>>>C>s>>*>>=>>α>C>>>>C>u>>>*>2>>>+>>β>C>>>>C>u>>*>>>>

其中αc是0.01-0.03,优选0.0175,βc是2-2.3,优选是2.0。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号