首页> 中国专利> 用于形成有机绝缘薄膜的组合物和由这种组合物形成的有机绝缘薄膜

用于形成有机绝缘薄膜的组合物和由这种组合物形成的有机绝缘薄膜

摘要

本发明公开了用于形成有机绝缘薄膜的组合物和由这种组合物形成的有机绝缘薄膜。所述的组合物包括具有马来酰亚胺结构的绝缘聚合物、交联剂和光酸发生剂以便形成交联结构。有机绝缘薄膜对随后光刻过程中使用的有机溶剂有优异的耐化学性并能提高晶体管的电性能。

著录项

  • 公开/公告号CN1637066A

    专利类型发明专利

  • 公开/公告日2005-07-13

    原文格式PDF

  • 申请/专利权人 三星电子株式会社;

    申请/专利号CN200410100228.4

  • 发明设计人 郑银贞;具本原;金周永;姜仁男;

    申请日2004-12-13

  • 分类号C08L35/00;C08J5/18;H01B3/44;

  • 代理机构北京市柳沈律师事务所;

  • 代理人张平元

  • 地址 韩国京畿道

  • 入库时间 2023-12-17 16:16:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-02-02

    未缴年费专利权终止 IPC(主分类):C08L35/00 授权公告日:20080528 终止日期:20161213 申请日:20041213

    专利权的终止

  • 2008-05-28

    授权

    授权

  • 2006-10-11

    实质审查的生效

    实质审查的生效

  • 2005-07-13

    公开

    公开

说明书

发明背景

本非临时申请按照35 U.S.C.§119(a)要求于2003年12月11日提交的韩国专利申请No.2003-90309的优先权,其内容这里引入作为参考。

发明领域

本发明涉及用于形成有机绝缘薄膜的组合物和由这种组合物形成的有机绝缘薄膜。更具体地说,本发明涉及用于形成交联有机绝缘薄膜以便在形成有机绝缘薄膜后对光刻过程中使用的有机溶剂具有优异耐化学性的组合物,和由这种组合物形成的有机绝缘薄膜。

相关技术描述

由于作为能表现出半导体特性的共轭有机聚合物的多炔得到发展,因此已积极地研究将有机半导体在各种应用例如功能电子和光学器件中作为新型电和电子材料,由于在各种合成方法方面,容易成型为纤维和薄膜,优良的柔性,高传导性和低制造成本。

在使用这些导电性聚合物制造的器件中,从1980年代就进行了使用有机材料作为半导体活性层制造有机薄膜晶体管的研究。关于这方面,目前在全世界内都在积极地进行大量研究。有机薄膜晶体管在结构上与硅(Si)薄膜晶体管基本相同,但在使用有机材料取代硅(Si)作为半导体材料方面存在巨大差异。另外,这类有机薄膜晶体管还有优势在于它们能通过环境压力下的印刷工艺和通过进一步使用塑料作为衬底的卷装进出工艺来制造,取代了常规硅工艺如等离子增强化学汽相沉积(CVD),这比硅薄膜晶体管在经济上有优势。

预期有机薄膜晶体管能用于智能卡与存货标签中使用的发光显示和塑料芯片的传动装置,并在性能上比得上α-Si薄膜晶体管。有机薄膜晶体管的性能取决于有机活性层的结晶程度、衬底和有机活性层之间界面处的充电特性、载流子注入到源/漏电极和有机活性层之间界面的能力。已有大量试验提高有机薄膜晶体管的性能。具体地说,在降低阈电压的努力中,已使用具有高介电常数的绝缘体例如铁电绝缘体如BaxSr1-xTiO3(钛酸锶钡(BST))、Ta2O5、Y2O3、TiO2等和无机绝缘体如PbZrxTi1-xO3(PZT)、Bi4Ti3O12、BaMgF4、SrBi2(Ta1-xNbx)2O9、Ba(Zr1-xTix)O3(BZT)、BaTiO3、SrTiO3、Bi4Ti3O12等作为无机绝缘薄膜材料(美国专利5946551)。但是,这些无机氧化物材料在加工方面并不比常规硅材料有任何优势。

对于有机绝缘薄膜材料,已使用聚酰亚胺、BCB(苯并环丁烯)、光丙烯酰基等(美国专利6232157)。但是,由于这些有机绝缘薄膜未表现出超过无机绝缘薄膜的令人满意的器件特性,因此它们难于适用于替代无机绝缘薄膜。

为解决这些问题,韩国专利申请2002-59061描述了具有能大幅度提高有机薄膜晶体管性能的马来酰亚胺共聚物结构的绝缘聚合物。但是,仍然存在有机绝缘聚合物可能会溶解到随后光刻过程中使用的有机溶剂中的问题。因此,本发明人提出一种通过UV辐照并退火交联剂和光酸发生剂的混合物来制备有机绝缘体的方法。

同样地,Infineon Technology尝试通过混合PVP与聚三聚氰胺-共-甲醛来提高随后过程中的耐化学性。但是,这种尝试由于需要约200℃的高温以交联PVP而局限到塑料衬底应用上(Journal of Applied Physics 2003,93,2977& Applied Physics Letter 2002,81,289)。

发明概述

因此,鉴于上述问题进行了本发明,本发明的一个特征是提供对随后光刻过程中使用的有机溶剂具有优异耐化学性的有机绝缘薄膜。因此,当使用该有机绝缘薄膜制造晶体管时,能提高晶体管的电性能,同时使形成微图(micropattern)形成为可能。

根据本发明的特征,提供一种用于形成有机绝缘薄膜的组合物,包括:

(i)用下面式1或2表示的有机绝缘聚合物:

式1

其中取代基R’各自独立地为氢原子、羟基、酯基、酰胺基、C1~12烷基或烷氧基、C6~30芳基或C3~30杂芳基,所述的芳基或杂芳基可被至少一个选自羟基、酯基、酰胺基、C1~12烷基和烷氧基和胺基中的基团取代;n为0.1和1之间的实数;m为0和0.9之间的实数;并且n和m的和为1,或

式2

其中R为C6~30芳基或C3~30杂芳基,所述的芳基和杂芳基可被至少一个选自C1~12烷基和烷氧基和胺基中的基团取代;取代基R”各自独立地为氢原子、羟基、酯基、酰胺基、C1~12烷基或烷氧基、C6~30芳基或C3~30杂芳基,所述的芳基和杂芳基可被至少一个选自羟基、酯基、酰胺基、C1~12烷基和烷氧基和胺基中的基团取代,条件是至少一个R”为羟基;n为0.1和0.9之间的实数;m为0.1和0.9之间的实数;并且n和m的和为1;

(ii)交联剂;

(iii)光酸发生剂;和

(iv)溶剂。

根据本发明的特征,还提供一种通过涂敷组合物然后UV辐照和退火形成的有机绝缘薄膜。

根据本发明的特征,又提供一种包括衬底、栅电极、栅绝缘薄膜、有机活性层和源-漏电极的有机薄膜晶体管,其中使用有机绝缘薄膜作为栅绝缘薄膜。

附图简述

从以下结合附图的详细描述中将能更清楚地理解本发明的上述和其它目的、特征和优点,其中:

图1a和1b为普通有机薄膜晶体管结构的横截面示意图;

图2为根据本发明实施例1制造的器件的电流转移特性图;

图3为根据本发明实施例1制造的器件的电荷迁移率图;

图4为根据本发明对比实施例1制造的器件的电流转移特性图;和

图5为根据本发明对比实施例1制造的器件的电荷迁移率图。

优选实施方案描述

下文中,将更详细地介绍本发明。

用下面的式1或2表示本发明的组合物中包含的有机绝缘聚合物:

其中取代基R’各自独立地为氢原子、羟基、酯基、酰胺基、C1~12烷基或烷氧基、C6~30芳基或C3~30杂芳基,所述的芳基和杂芳基可被至少一个选自羟基、酯基、酰胺基、C1~12烷基和烷氧基和胺基中的基团取代;n为0.1和1之间的实数;m为0和0.9之间的实数;并且n和m的和为1,或

其中R为C6~30芳基或C3~30杂芳基,所述的芳基和杂芳基可被至少一个选自C1~12烷基和烷氧基和胺基中的基团取代;取代基R”各自独立地为氢原子、羟基、酯基、酰胺基、C1~12烷基或烷氧基、C6~30芳基或C3~30杂芳基,所述的芳基和杂芳基可被至少一个选自羟基、酯基、酰胺基、C1~12烷基和烷氧基和胺基中的基团取代,条件是至少一个R”为羟基;n为0.1和0.9之间的实数;m为0.1和0.9之间的实数;并且n和m的和为1。

除了有机绝缘聚合物外,本发明的组合物还包括交联剂和光酸发生剂以便在退火和UV辐照时引起交联反应以形成有机绝缘薄膜。

本发明组合物中包含的交联剂为退火时能引起交联反应的材料。本发明中使用的交联剂的具体例子包括:环氧树脂;酚树脂;三聚氰铵树脂(melamine resins);聚丙烯酸;有机酸如乙酸、草酸、丁酸、酒石酸、辛酸、油酸、邻苯二甲酸、偏苯三酸、甲苯磺酸、苯乙烯磺酸等;胺化合物如丁胺、辛胺、月桂胺、二丁胺、一乙醇胺、二乙醇胺、三乙醇胺、二乙撑三胺、三乙撑四胺、olecylamine、环己胺、苄胺、二乙基氨基丙胺、亚二甲苯基二胺、三乙撑二胺、胍、二苯基胍、4,6-三(二甲基氨基甲基)苯酚、吗啉、N-甲基吗啉、2-乙基-4-甲基咪唑、1,8-二氮杂双环[5.4.0]十一碳烯-7、咪唑等;和酐如马来酐、邻苯二甲酸酐、六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、桥亚甲基四氢邻苯二甲酸酐、十二烷基琥珀酸酐、均苯四酸酐、氯菌酸酐(chlorendric anhydride)等。可单独使用这些交联剂,或联合其两种或多种使用。

以100重量份有机绝缘聚合物计,交联剂的使用量为10~80重量份。如果使用的交联剂的量超过80重量份,则会损害绝缘特性。同时,如果使用的交联剂的量少于10重量份,则导致溶剂变质(solvent deterioration)。

对于本发明组合物中包含的光酸发生剂,可使用离子光酸发生剂、非离子光酸发生剂和聚合光酸发生剂。

本发明中使用的离子光酸发生剂的具体例子包括锍基和碘鎓基物质。离子光酸发生剂的更具体例子为用下面式3至10表示的物质:

式3

其中R1、R2和R3各自独立地为直链或支链C1~6烷基、苯基或取代的苯基烷基;X为直链的、支链的或环状的C1~8烷基磺酸根(sulfonate)、全氟烷基磺酸根、萘基磺酸根、10-樟脑磺酸根、苯基磺酸根、甲苯基磺酸根、二氯苯基磺酸根、三氯苯基磺酸根、三氟甲基苯基磺酸根、Cl、Br、SbF6、BF4、PF6或AsF6

式4

其中X为直链的、支链的或环状的C1~8烷基磺酸根、全氟烷基磺酸根、萘基磺酸根、10-樟脑磺酸根、苯基磺酸根、甲苯基磺酸根、二氯苯基磺酸根、三氯苯基磺酸根、三氟甲基苯基磺酸根、F、Cl、Br、SbF6、BF4、PF6或AsF6;D1为氢原子或C1~4烷基;和D2为C1~10烷基或2-乙烯氧基乙基;

式5

其中R4为C1~10烷基;MXn-为BF4-、PF6-、AsF6-或SbF6-

式6

式7

其中MXn-为PF6-或SbF6-

式8

其中R5为C1~10烷基;MXn-为PF6-或SbF6-

式9

其中R6和R7各自独立地为C1~20烷基或烷氧基,或羟基;Ar1、Ar2和Ar3各自独立地为苯基、萘基或蒽基;和

式10

其中R8和R9各自独立地为C1~20烷基或烷氧基,或羟基。

式3的物质的具体例子包括三氟甲磺酸三苯锍、全氟辛磺酸三苯锍、全氟丁磺酸三苯锍、全氟辛磺酸二苯基对甲苯锍、全氟辛磺酸三(对甲苯)锍、三氟甲磺酸三(对氯苯)锍、三氟甲磺酸三(对甲苯)锍、三氟甲磺酸三甲基锍、三氟甲磺酸二甲基苯基锍、三氟甲磺酸二甲基甲苯基锍、全氟辛磺酸二甲基甲苯基锍、对甲苯磺酸三苯锍、甲磺酸三苯锍、丁磺酸三苯锍、正辛磺酸三苯锍、1-萘磺酸三苯锍、2-萘磺酸三苯锍、10-樟脑磺酸三苯锍、2,5-二氯苯磺酸三苯锍、1,3,4-三氯苯磺酸二苯基甲苯锍、对甲苯磺酸二甲基甲苯锍、2,5-二氯苯磺酸二苯基甲苯锍、四氟硼酸三苯锍、六氟乙酸三苯锍、氯化三苯锍等。

优选的式4的物质包括其中X为甲磺酸根、三氟甲磺酸根、对甲苯磺酸根、10-樟脑磺酸根、环己氨基磺酸根、全氟-1-丁磺酸根、全氟辛磺酸根、F、Cl、Br、SbF6、BF4、PF6或AsF6;D1为氢原子或甲基;和D2为甲基或乙烯氧基乙基的那些。

本发明中使用的非离子光酸发生剂的例子包括硝基苄基磺酸根基物质和偶氮萘醌基物质。非离子光酸发生剂的更具体的例子为用下面式11至17表示的物质:

式11

其中R12和R13各自独立地为直链的、支链的或环状的C1~10烷基;

式12

其中R14为氢原子、卤原子或直链或支链C1~5烷基、烷氧基或卤代烷基;R15为直链的、支链的或环状的C1~10烷基、烷基苯基或卤代烷基;

式13

其中R16为氢原子、卤原子、直链或支链C1~5烷基或三氟甲基;R17为直链的、支链的或环状的C1~10烷基、烷基苯基或卤代烷基、苯基烷基、直链或支链C1~5烷氧基、苯基或甲苯基;

式14

其中R18为用下面式14a或14b表示的基团:

其中R19、R20和R21各自独立地为氢原子或卤原子;k为0至3的整数;或

其中R22至R26各自独立地为氢原子、卤原子、直链或支链C1~5烷基或烷氧基、三氟甲基、羟基、三氟甲氧基或硝基;

式15

其中R27为上面式14a或14b的基团;R28为氢原子、羟基或R27SO2O;R29为直链或支链C1~5烷基或用下面式15a表示的基团:

其中R30和R31各自独立地为氢原子、直链或支链C1~5烷基或R27SO2O;

式16

其中R32为可被至少一个杂原子断开的烷基或芳基;j为1至3的整数;和

式17

其中Q1和Q2各自独立地为C1~50烷基或芳基,g和h都为不小于1的整数。

式11的物质的具体例子包括1-环己基磺酰基-1-(1,1-二甲基乙基-磺酰基)重氮甲烷、双(环己基磺酰基)重氮甲烷、1-环己基磺酰基-1-环己基羰基重氮甲烷、1-重氮基-1-环己基磺酰基-3,3’-二甲基丁-2-酮、1-重氮基-1-甲基磺酰基-4-苯基丁-2-酮、重氮基-1-(1,1-二甲基乙基磺酰基)3,3-二甲基-2-丁酮、1-乙酰基-1-(1-甲基乙基磺酰基)重氮甲烷等。

式12的物质的具体例子包括双(对甲苯磺酰基)重氮甲烷、甲基磺酰基-对-甲苯磺酰基重氮甲烷、1-重氮基-1-(对甲苯磺酰基)-3,3’-二甲基-2-丁酮、双(对-氯苯磺酰基)重氮甲烷、环己基磺酰基-对-甲苯磺酰基重氮甲烷等。

式13的物质的具体例子包括1-对甲苯磺酰基-1-环己基羰基重氮甲烷、1-重氮基-1-(对甲苯磺酰基)-3,3-二甲基丁-2-酮、1-重氮基-1-苯磺酰基-3,3-二甲基丁-2-酮、1-重氮基-1-(对甲苯磺酰基)-3-甲基丁-2-酮等。

式14的物质的具体例子包括1,2,3-三(三氟甲磺酰氧基)苯、1,2,3-三-(2,2,2-三氟乙磺酰氧基)苯、1,2,3-三(2-氯乙磺酰氧基)苯、1,2,3-三(对-三氟苯磺酰氧基)苯、1,2,3-三(对-硝基苯磺酰氧基)苯、1,2,3-三(2,3,4,5-五氟苯磺酰氧基)苯、1,2,3-三(对-氟代苯磺酰氧基)苯、1,2,3-三(甲磺酰氧基)苯、1,2,4-三(对-三氟甲氧基苯磺酰氧基)苯、1,2,4-三(2,2,2-三氟乙磺酰氧基)苯、1,2,4-三(2-噻吩基磺酰氧基)苯、1,3,5-三甲磺酰氧基)苯、1,3,5-三(三氟甲磺酰氧基)苯、1,3,5-三(2,2,2-三氟乙磺酰氧基)苯、1,3,5-三(对-硝基苯磺酰氧基)苯、1,3,5-三(2,3,4,5,6-五氟苯磺酰氧基)苯、1,3,5-三(对-氟代苯磺酰氧基)苯、1,3,5-三(2-氯乙磺酰氧基)苯等。

式15的物质的具体例子包括2,3,4-三(对-氟苯磺酰氧基)二苯甲酮、2,3,4-三(三氟甲磺酰氧基)二苯甲酮、2,3,4-三(2-氯乙磺酰氧基)二苯甲酮、2,3,4-三(对-三氟甲基苯磺酰氧基)二苯甲酮、2,3,4-三(对-硝基苯磺酰氧基)二苯甲酮、2,3,4-三(对-氟代苯磺酰氧基)乙酰苯、2,3,4-三(2,3,4,5,6-五氟苯磺酰氧基)乙酰苯、2,3,4-三(2-硝基苯磺酰氧基)乙酰苯、2,3,4-三(2,5-二氯苯磺酰氧基)乙酰苯、2,3,4-三(2,3,4-三氯苯磺酰氧基)乙酰苯、2,2’,4,4’-四(甲磺酰氧基)二苯甲酮、2,2’,4,4’-四(2,2,2-三氟乙磺酰氧基)二苯甲酮、2,2’,4,4’-四(2-氯乙磺酰氧基)二苯甲酮、2,2’,4,4’-四(2,5-二氯苯磺酰氧基)二苯甲酮、2,2’,4,4’-四(2,4,6-三甲基苯磺酰氧基)二苯甲酮、2,2’,4,4’-四(间-三氟甲基苯磺酰氧基)二苯甲酮等。

聚合光酸发生剂为能在光照射时产生酸的聚合物,其中聚合物具有500~1,000,000的分子量,并在其主链或支链中包含锍或碘鎓盐。

以100重量份有机绝缘聚合物计,光酸发生剂的使用量为0.1~10重量份。当使用的光酸发生剂的量超过10重量份时,存在交联混合物形成胶体的问题。另一方面,当使用的光酸发生剂的量少于0.1重量份时,光敏性差并因此导致薄膜的溶剂变质。

通过混合有机绝缘聚合物、交联剂和光酸发生剂,将混合物以固体含量在1~50wt%范围内的量溶解到有机溶剂中,并将溶液涂敷到形成有栅电极的衬底上来形成本发明的有机绝缘薄膜。对于有机溶剂,可使用环己酮、二乙二醇甲基乙基醚、N-甲基吡咯烷酮等。可通过旋涂、旋转铸造、喷墨印刷技术等进行涂敷。

在90~110℃下退火绝缘薄膜50~70分钟,并暴露于UV光以形成最终的有机绝缘薄膜。退火和UV辐照的顺序可颠倒。另外,可重复进行这两个过程一次或多次。

可使用这样形成的有机绝缘薄膜制造包括衬底、栅电极、栅绝缘薄膜、有机活性层和源-漏电极的有机薄膜晶体管。此时,使用有机绝缘薄膜作为栅绝缘薄膜。

典型的有机薄膜晶体管的结构示于图1a和1b。本发明的有机绝缘薄膜不仅适用于图1a和1b所示的结构,而且适用于本领域中已知的所有结构。

对于有机活性层材料,可使用本领域中常用的任何材料。合适材料的例子包括但不限于并五苯、铜酞菁、聚噻吩、聚苯胺、多炔、聚吡咯、聚亚乙烯苯(polyphenylene vinylenes)和它们的衍生物。

合适的栅电极和源-漏电极材料为金属和本领域中常用的导电性聚合物。具体例子包括但不限于金(Au)、银(Ag)、铝(Al)、镍(Ni)、铟-锡氧化物(ITOs)、聚噻吩、聚苯胺、多炔、聚吡咯、聚亚乙烯苯、PEDOT(聚乙二氧噻吩)/PSS(聚苯乙烯磺酸酯)等。

有机薄膜晶体管的衬底材料为但不限于例如玻璃、硅晶片、PET、PC、PES、PEN等。

下文中,将结合下面的优选实施例更详细地描述本发明。但是,给出这些实施例用于说明目的而不能被认为是限制本发明的范围。

制备实施例1;有机绝缘聚合物的制备

按照下面的步骤制备上面式20的有机绝缘聚合物。

将50g(0.51mol)马来酐(Aldrich)溶解到醚(250mL)中,然后向其中加入50.6g(0.46mol)4-氨基苯酚(Aldrich)。搅拌得到的混合物30分钟得到黄色粉末固体。将固体溶解到100mL乙酸酐(Aldrich)中,然后向其中加入15g(0.18mol)乙酸钠。将反应混合物加热到90℃并反应3小时。然后,使反应混合物冷却,并加入500mL水停止反应。过滤反应混合物,由甲醇重结晶得到4-乙酸基苯基马来酰亚胺,为暗黄色晶体。将40g(0.17mol)4-乙酸基苯基马来酰亚胺、28.06g(0.17mol)4-乙酸基苯乙烯(Aldrich)、1.42g AIBN(TCI)和35滴1-十二烷硫醇(Aldrich)依次溶解到500mL丙酮中,使它们在65℃下聚合3.5小时。将反应溶液倒入甲醇和丙酮的混合溶液中,然后向其中加入10g对-甲苯磺酸(Aldrich)。回流反应混合物5小时,同时使用Dean-Stark捕集器除去溶剂。在将溶剂除去到一定程度后,向溶液中加入水和甲醇(5∶1)的溶液得到51g为白色固体的式20聚合物。

制备实施例2:用于形成有机绝缘薄膜的涂敷溶液的制备

将7g制备实施例1中制备的有机绝缘聚合物、1.5g作为交联剂的下面式21a的聚(乙烯-共-丙烯酸甲酯-共-甲基丙烯酸缩水甘油酯)(Aldrich)、1.5g作为另一种交联剂的下面式21b的聚(乙烯-共-甲基丙烯酸)(Aldrich)和0.1g下面式22的光酸发生剂(PAC200,Miwon Commercial Co.Ltd.,Korea)溶解到73g环己酮和4.5g二乙二醇甲基乙基醚的混合溶液中制备用于形成有机绝缘薄膜的涂敷溶液。

实施例1:有机薄膜晶体管的制造

在这个实施例中,制造底接触的有机薄膜晶体管(图1b)。首先,通过真空沉积技术将Al沉积到作为衬底的洗净玻璃上形成厚度为1500的栅电极。通过旋涂以4000rpm将制备实施例2中制备的用于形成有机栅绝缘薄膜的涂敷溶液涂敷到栅电极上至厚度为5000,在100℃下预焙烧3分钟,用600WUV辐照20秒,并在100℃下焙烧1小时形成有机绝缘薄膜。然后,将Au沉积到有机栅绝缘薄膜上至厚度为1000,并经过照相过程形成Au电极图形。在2×10-7托真空、50℃衬底温度和0.85/秒沉积速率下通过有机分子束沉积(OMBD)在Au电极图形上沉积并五苯至厚度为1000,以制造器件。

使用KEITHLEY半导体特性系统(4200-SCS)绘制显示器件电流转移特性和电荷迁移率的曲线(图2和3)。使用下面的方程由曲线计算器件的电性质,结果示于下面的表1。

可使用下面的饱和区电流方程由(ISD)1/2-VG图的斜率计算器件的电荷迁移率:

>>>I>SD>>=>>>W>>C>o>>>>2>L> >μ>>>(>>V>G>>->>V>T>>)>>2>>>s>

>>>>I>SD>>>=>>>>μ>>C>o>>W>>>2>L> >>>(>>V>G>>->>V>T>>)>>>s>

>>slope>=>>>>μ>>C>o>>W>>>2>L> >>>s>

>>>μ>FET>>=>>>(>slope>)>>2>>>>2>L>>>>C>o>>W> >>s>

其中ISD为源-漏电流;μ或μFET为电荷迁移率,Co为氧化物薄膜的电容,W为沟道宽度,L为沟道长度,VG为栅压和VT为阈电压。

.关态漏电流(I)为关态时流过的电流,并按电流比由关态最小电流确定。

.电流比I/I为开态最大电流值与关态最小电流值的比。

对比实施例1:使用不包含交联剂的有机绝缘体制造器件

按照与实施例1相同的方法制造器件,除了使用不包含交联剂和光酸发生剂的涂敷溶液涂敷绝缘薄膜,并在100℃下焙烧绝缘薄膜1小时制造器件。测量器件的电流转移特性和电荷迁移率,结果示于图4和5。按照与实施例1相同的方法计算器件的电性质,结果示于下面的表1。

                                表1

    迁移率(cm2/Vs)  I(A)  I/I    实施例1    5.4 10-9~10-10  105    对比实施例1    4.3 10-10  105~106

从上述描述明显看出,由于本发明的有机绝缘薄膜对随后光刻过程中使用的有机溶剂有优异的耐化学性,因此它能提高晶体管的电性能,同时使形成微图案成为可能。

尽管为了说明目的已公开了本发明的优选实施方案,但本领域那些技术人员能认识到各种改变、添加或替换都是可能的,只要不脱离附属权利要求中公开的本发明的范围和精神。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号