首页> 中国专利> 心搏和呼吸测量装置

心搏和呼吸测量装置

摘要

本发明涉及一种心搏和呼吸测量装置,其包括由人体压住的传感器(2),和根据传感器(2)的输出测量心搏和呼吸的测量电路。传感器(2)包括线圈,其当承受人体施加的压力时可弹性变形。测量电路包括LC振荡电路(3),其中线圈的电感分量和电容分量分别用作振荡电路的线圈L和电容C;和计算处理电路(4),可检测LC振荡电路(3)的振荡频率的变化,并根据变化中的心搏分量和呼吸分量来计算心动周期、心率、呼吸周期,和呼吸速率。

著录项

  • 公开/公告号CN1502298A

    专利类型发明专利

  • 公开/公告日2004-06-09

    原文格式PDF

  • 申请/专利权人 三洋电机株式会社;

    申请/专利号CN200310120732.6

  • 发明设计人 南浦武史;阪井英隆;阪口明;

    申请日2003-11-25

  • 分类号A61B5/0205;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人章社杲

  • 地址 日本大阪府

  • 入库时间 2023-12-17 15:22:13

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-01-20

    专利权的终止(未缴年费专利权终止)

    专利权的终止(未缴年费专利权终止)

  • 2007-07-18

    授权

    授权

  • 2005-09-07

    实质审查的生效

    实质审查的生效

  • 2004-06-09

    公开

    公开

说明书

发明领域

本发明涉及一种心搏和呼吸测量装置,可测量人体的心搏和/或呼吸。

背景技术

近年来随着社会的老龄化,卧床不起的人数不断增加。心电图仪作为监测卧床不起的老人身体状况一种方式,已经产生根据心电图仪测出的心率变化进行诊断的方法的非常关注。近来,随不断增加的健康管理的意识,人们非常希望在家中睡眠时能够方便地测量心率。

但是,传统的心电图仪用于测量心率,必须固定许多电极到皮肤上,而且传统仪器还有的缺点是,进行检查的人要受到从电极延伸到仪器主体的导线长时间的约束。由于测量呼吸速率涉及相同的情况。所以在家中方便地进行测量难以实现。

已经知道一种利用电容型传感器来测量病人的动态状况的系统[参见(i)Tomohiro Ohkubo和Yoshimichi Yonezawa刊登在”MedicalElectronics and Biomedical Engineering”1994年32-2卷132/135页上的题为“通过电容型传感器测量病人动态状况的系统(System forMeasuring Dynamic Conditions of Patients by Capacitance-TypeSensor)”的文章;和(ii)Takeshi Minamiura,Yoshihisa Fujiwara,Hedetaka Sakai,Hidefumi Matsuure和Shoji Yasuda刊登在”Society ofElectronics,Information,and Communications 2002年会员大会,摘要集,D-7-25的题为“便携式无拘束睡眠传感器的进展(Development ofPortable Nonrestraint Sleep Sensor)”的文章]。

尽管病人的心率或呼吸速率可通过这些传感器无约束地进行测量,但这类传感器仍需在测量灵敏度上进行提高。

发明内容

本发明的一个目的是提供一种心率/呼吸测量装置,其适合无约束地测量人体心搏或呼吸,并具有很高的灵敏度。

本发明提供了一种心搏/呼吸测量装置,其包括由人体压住的传感器2,和测量电路,其可根据所述传感器2的输出测量心搏和呼吸。所述传感器2包括线圈,当承受人体施加的压力时进行可恢复地弹性变形,测量电路包括LC振荡电路3,其中线圈的电感分量和电容分量分别用作振荡电路的线圈L和电容C;和计算处理电路4,可检测LC振荡电路3的振荡频率的变化,并根据变化中的频率分量或心搏和/或呼吸分量来计算心搏和/呼吸的生理数据。传感器2的线圈可通过绕弹性件缠绕的丝制成。

在本发明的心搏/呼吸测量装置中,所述传感器2安装在面向上、面向下或侧向躺的人体之下。因此,传感器2承受人体施加的压力和感受到人体的心搏和呼吸。结果是,传感器2出现弹性变形。

传感器2可安装在压力沿正交于线圈件的绕组轴线的方向作用的位置。在这种情况下,传感器2在所承受的压力作用下沿正交于线圈件的绕组轴线的方向压缩,改变了截面积。或者,传感器2可安装在压力沿线圈件的绕组轴线的方向作用的位置。在这种情况下,传感器2在所承受的压力作用下沿正交于线圈件的绕组轴线的方向压缩,改变了长度。

线圈件是螺旋的,所形成的传感器2具有电感分量和电容分量。电感随截面积和长度变化而变化,电容的变化由于传感器2的弹性变形而引起,随线圈的线匝之间的距离变化而变化,随线圈和人体之间的距离变化而变化。电感和电容的变化包括心搏和呼吸的频率分量。

LC振荡电路3的振荡频率随传感器2的电感和电容的变化而变化。计算处理电路4检测振荡频率的变化,根据变化中的频率分量和心搏和/或呼吸分量计算出心搏和/或呼吸的生理数据(如心率,呼吸速率,心动周期和呼吸周期)。

使用本发明的心搏/呼吸测量装置可将传感器安装在如床或床垫上,可无约束地测量人体的心搏或呼吸。因为传感器的电感和电容随心搏或呼吸变化,所以可以得到高精度的心搏或呼吸度量。

附图说明

图1是根据本发明的心搏/呼吸测量装置的结构方框图;

图2是说明传感器安装位置的示意图;

图3是显示传感器结构的透视图;

图4是显示传感器如何弹性变形的视图;

图5是显示LC振荡电路的示例结构的电路图;

图6是说明计算处理电路的工作的流程图;

图7是显示LC振荡电路不同点的波形的图表;

图8是显示本发明的心搏/呼吸测量装置测得的振荡频率变化的图表,图中还显示了心电图仪记录的心电图形和呼吸测量仪器测得的呼吸的电压变化;

图9是显示振荡频率变化的图表。

具体实施方式

下面将参考附图对本发明进行详细的介绍。本发明的心搏/呼吸测量装置包括设置在床垫1表面相对人体上半部的传感器2,如图1和2所示。传感器2受到人体上半部施加的压力。

参考图3,传感器2包括弹性件21,具有弯曲成圆弧形的树脂板的形式,和围绕弹性件21缠绕的线圈22。弹性件21从上面看是矩形的,截面具有横向伸长的半椭圆形,沿绕组轴线方向的长度L为250毫米,沿正交于绕组轴线方向的宽度W为150毫米,高度为9毫米。线圈22通过围绕弹性件21缠绕直径0.2毫米的软铜线450圈形成。

弹性件21插入传感器2的线圈22的内部空间,可防止线圈22被压扁并保证线圈22能弹性恢复。代替弹性树脂件21,可采用线圈22的内部空间插入海绵、气袋、弹簧或类似物体。将弹性树脂件、海绵、气袋、弹簧或类似物体也设置在围绕线圈22的外部空间可以提高测量精度。

传感器2受到人体的上半部施加的压力F并感受到人体的心搏或呼吸,如图1和2所示,人体可面向上,面向下或侧向躺在床上。传感器2如图4中点划线所示出现弹性变形,图中实线表示未加载状态,截面积随压力变化发生变化,线圈22的线匝之间的距离也变化,以及人体与线圈22之间距离变化。

假设传感器2具有电感L,真空导磁率μ0,截面积A,线圈匝数N,长度L,和长冈系数K。传感器2具有下面的数学关系表达式1,数学表达式1:

L=K(μ0AN2/L)

因此,传感器2的截面积的变化将引起传感器2的电感L的变化。电感的变化包括心搏和呼吸的频率分量。

构成传感器2的线圈件不仅有电感分量还有电容分量,所以人体施加的压力使传感器2弹性变形、线圈22的线匝之间距离的变化、和线圈22和人体之间距离的变化也改变电容C。电容的改变包括心搏和呼吸的频率分量。

如图1所示,传感器2连接到LC振荡电路3,其中传感器2用作振荡线圈和电容。LC振荡电路3又连接到计算处理电路4,其包括微电脑等。

参考图5,传感器2可用包括平行连接的线圈L和电容C的等效电路表示。LC振荡电路3包括LC振荡电路部分31,这部分包括传感器2;缓冲电路部分32,可输送振荡信号到输出级,且不会干涉LC振荡电路部分31的工作;和整形电路33,可将缓冲电路32得到的包括正弦波的振荡信号转换成矩形波的振荡信号。成形电路33连接到输出端34。

LC振荡电路3的振荡频率f0可用下面的数学公式2表示。数学表达式2:

> >f>0>>=>1>/>>(>2>π>×>>LC>>)>>>s>

图7显示了LC振荡电路3的不同点的电压波形。A表示的是传感器2输出端a的电压波形,B表示的是缓冲电路部分32的输入端b的电压波形,C是整形电路部分33的输入端c的电压波形,D是整形电路部分33的输出端d的电压波形。

LC振荡电路3产生矩形波形的电压信号,信号输送到图1所示的计算处理电路4。参考图6,计算处理电路4首先在步骤S1通过电路中设置的计数器计算单位时间内矩形波电压信号的脉冲数量来测出振荡频率。振荡频率的变化包括心搏的频率分量和呼吸的频率分量。

对测得的振荡频率的变化进行计算处理,如通过数字过滤器在步骤S2得到心搏的频率分量和呼吸的频率分量。最后在步骤S3从得到的这些心搏和呼吸的频率分量计算出心率和呼吸速率。

图8显示了计算电路4测得的振荡频率的变化P,心电图仪(未显示)记录的心电图Q,和呼吸测量仪器(未显示)测得的呼吸的电压变化R。如图所示,振荡频率的变化P明显包括心搏和呼吸的频率分量。

图9显示了图8所示振荡频率的变化P的放大图。根据图示的振荡频率的变化P,心动周期和呼吸周期可通过测量心脏开始一次心跳到下一次心跳开始的时间周期和测量开始一次呼吸到下一次呼吸开始的时间周期进行检测。图9显示出心动周期是thi(秒),呼吸周期是tri(秒)。从这些结果可产生心率每分钟为60/thi,呼吸速率每分钟为60/tri

因此,对振荡频率的变化进行计算处理,如通过过滤器根据频率变化得到心搏的频率分量和呼吸的频率分量,进而可得到心动周期,心率,呼吸周期,和呼吸速率。

在根据本发明的心搏/呼吸测量装置中,传感器2可连接到床垫1,使处于躺卧位置的身体的心率和呼吸速率在不必约束身体的情况下进行测量。本发明的装置,传感器的电感和电容随心搏和呼吸而变化,使得心率和呼吸速率可高精度地进行计算。

本发明的装置的结构并不限于前面提到的实施例。而是在附属权利要求限定的技术范围内可以不同方式来改进。例如,组成传感器2的线圈并不限于上述实施例,尺寸和线绕组的匝数可以变化。

构成传感器2的线圈不必一定是径向可弹性变形的,不必安装到压力沿正交于绕组轴线的方向作用其上的位置。还可选择,使线圈安装到压力沿绕组轴线的方向作用其上的位置,使弹性变形发生在绕组的轴向上。在这种情况下,床上结合的弹簧可用作传感器2的线圈。

上面介绍的实施例通过计算LC振荡电路输出的矩形波形的电压信号的单位时间的脉冲数来测量振荡频率,并根据振荡频率得到心搏的频率分量和吸收的频率分量,这个方法不是限制性的,可将振荡频率测量值转换为电压值,然后根据电压值检测振荡频率。

可采用一种根据电压值检测振荡频率变化的方法,其中利用已有的锁相回路(PLL)使振荡频率的变化输出为电压值。在这种情况下,在图5所示的输出端d的矩形波形的电压信号作为基准频率输入PLL,输出的频率与基准频率进行相位比较,改变施加到电压可控振荡器(VCO)电路的电压,使频率在相位上配合。测量施加到VCO电路的电压,由此,可根据测得的电压变化得到输出端d的矩形波形电压信号的脉冲频率的变化。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号