首页> 中国专利> 滤色片形成方法、发光元件层形成方法、采用上述方法的彩色显示装置的制造方法或彩色显示装置

滤色片形成方法、发光元件层形成方法、采用上述方法的彩色显示装置的制造方法或彩色显示装置

摘要

在有源矩阵型彩色液晶显示装置或有机EL显示装置等的元件基片(10)上,于栅线(11)、TFT(1)及数据线(30)形成之后,形成遮盖该数据线(30)的垄状保护绝缘层(32)。沿保护绝缘层(32)的延伸方向(列方向)移动辊筒(46)将转印胶片(40)上的滤色片层(42)压附在该基片(10)上。由于在列方向进行滤色片的转印,可以一边将气体从形成于保护绝缘层(32)之间的像素空间朝行进方向挤出,一边使滤色片跟基片无间隙地贴合。滤色片形成时,保护绝缘层(32)保护数据线(30)不受处理液等的沾染。在像素空间设置有机发光元件层后,成为有机EL显示装置。

著录项

  • 公开/公告号CN1392960A

    专利类型发明专利

  • 公开/公告日2003-01-22

    原文格式PDF

  • 申请/专利权人 三洋电机株式会社;

    申请/专利号CN01803088.2

  • 发明设计人 松冈英树;前田和之;

    申请日2001-10-12

  • 分类号G02B5/20;G02F1/1335;G09F9/00;G09F9/30;G09F9/35;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人杨凯;张志醒

  • 地址 日本大阪府

  • 入库时间 2023-12-17 14:32:02

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2007-02-28

    授权

    授权

  • 2003-01-22

    公开

    公开

说明书

技术领域

本发明涉及滤色片形成方法,具体涉及在彩色液晶显示装置和彩色电致发光显示装置等设备中的、形成数据线、开关元件以及像素电极等基片上,进一步形成滤色片或发光元件层的方法,或者与它们有关的显示装置。

背景技术

作为小型的薄型显示装置,现在液晶显示装置等的平面显示装置正在迅速普及。这种平面显示装置,例如液晶显示装置(LCD),它通过在相对侧表面分别形成电极的第一及第二基片之间封入液晶而构成;进而还有进行彩色显示的LCD,其上设有对应各像素的R、G、B任一颜色的滤色片,对每个像素的显示色进行控制。

图1所示为有源矩阵型LCD的电路结构,各像素处有跟像素电极连接的薄膜晶体管(TFT)等开关元件形成,通过开关元件对各像素处的显示进行控制。这种有源型LCD中,在第一基片上形成TFT和像素电极,在与该基片相对的第二基片上形成共用电极。彩色有源矩阵型LCD,在这种结构上还增加了滤色片,传统技术中,该滤色片大多在其上有上述共用电极形成的第二基片上形成。

这种在第二基片上形成滤色片的场合,必须考虑到跟第一基片的位置对合,为此,作为对策要在第二基片上形成黑底(blackmatrix)。但是,这种黑底是造成LCD开口率下降的重大原因;业界高度重视提高LCD的开口率,期望在这方面能有所改善。

为了不用上述黑底而提高开口率,现在提出了采用所谓“片上滤色片”(on-chip color filter)结构的LCD,这是一种在形成开关元件的基片(第一基片)上形成滤色片的结构。如采用“片上滤色片”结构,就不必因为顾虑第二基片相对第一基片的贴合位置偏差而设置黑底了。

图2是说明有源矩阵型LCD的片上滤色片之结构的示图。在第一基片10上,如上述图1形成矩阵形的数据线和栅线(图2中未示出),在它们的交点附近形成TFT2(图2中未示出)。先在基片上形成栅线和TFT,然后在将它们遮盖的绝缘膜上形成上述的数据线30和每个像素处的滤色片50。在滤色片50上形成经由接触孔与TFT连接的ITO(铟锡氧化物)等的像素电极20。第一基片10和其表面形成共用电极82的第二基片80,将液晶层70夹于之间并相对贴合,通过共用电极82和像素电极20对加于每个像素处的液晶层70的电压执行控制,驱动液晶进行彩色显示。采用这种片上滤色片,能够显示明亮的彩色。

采用上述的片上滤色片,有可能使色渗问题得到缓解;但是,为了将R、G、B各色滤色片在对应的像素处形成,还需要这样一道工序,让一旦在整个基片上形成的各滤色片只在必要的像素位置留下,并将它们从不需要的像素处刻蚀掉。而且,要对R、G、B各滤色片分别实施该工序。

然而,在这些滤色片的下层即第一基片上,要形成用以给上述各像素电极供给显示数据电压的TFT,以及向TFT供给显示数据信号、扫描信号的布线。为此,在制作形成滤色片的图形时,存在易使下层的布线和TFT的导电层受腐蚀或氧化的问题。

特别是,有许多数据线、栅线布置在显示像素之间的边界处,尤其如图2所示数据线多用易受腐蚀、氧化的高电导率的金属铝,此外如图2所示,在每个像素处,数据线位于跟被制作图形的滤色片的邻接像素的交界处。片上滤色片是这样构成的,采用在负性光刻胶材料中混入颜料的滤色片材料时,经过给该滤色片曝光、显影,就可使滤色片形成所要的形状。但是,数据线容易沾染这种滤色片图形制作时所用的碱性显影液,从而使其品质恶化。

另一方面,对于取景器等用的小像素LCD,必须注意不让滤色片露出而进入邻接像素,滤色片的图形制作精度显得非常重要;但是,由于滤色片采用感光树脂等原料,以及膜层厚度大等原因,只凭显影、刻蚀能力很难获得轮廓明显的滤色片,也不能防止滤色片露出而进入邻接像素区。

本发明旨在解决上述课题,形成不会给下层布线等以不良影响的、轮廓明显的片上滤色片。

本发明的另一目的在于提供这样一种方法,采用该方法在以转印方式形成片上滤色片时不会对下层布线等带来不良影响,且可以可靠防止转印时在滤色片与基片之间出现间隙。

发明内容

为了达成上述目的,本发明具备如下一些特征。

在本发明的将设置在转印胶片上的滤色片层或发光元件层转印到所述被转印基片的方法中,被转印基片上设有,在规定方向上多条并排延伸的布线以及将该布线遮盖的突起于基片形成的垄状保护绝缘层,通过按压机构将所述转印胶片上的滤色片层或发光元件层压在被转印基片上,再沿上述保护绝缘层的延伸方向移动该按压机构,将所述滤色片层转印到所述被转印基片上。

依据本发明另一形态的是这样一种彩色显示装置的制造方法,该显示装置的基片上设有:多个开关元件,向该开关元件供给数据信号的多条数据线,向对应的所述开关元件供给选择信号的多条选择线,跟对应的所述开关元件直接或间接连接的像素电极,以及在该像素电极下方形成的滤色片;在基片上形成所述选择线、所述开关元件和所述数据线后,形成分别将沿列方向延伸的所述数据线遮盖的在基片上垄状突起的保护绝缘层,通过按压机构将转印胶片上的滤色片层压附在所述基片上,再沿上述保护绝缘层的延伸方向移动该按压机构,将所述滤色片层转印到所述基片上。

依据本发明另一形态的是这样一种彩色显示装置的制造方法,该显示装置的基片上有多个像素,各像素中设有:在第一电极与第二电极之间设有发光元件层的发光元件,连接于数据线和选择线的开关用晶体管,连接于驱动电源与所述发光元件之间、按照经由所述开关用晶体管从数据线供给的数据信号、控制从驱动电源向所述发光元件供给的电力的元件驱动用晶体管;在基片上形成沿列方向延伸的所述数据线后,形成将该数据线遮盖的在基片上垄状突起的保护绝缘层,在由并排延伸的所述保护绝缘层隔开的区域的基片上形成的所述发光元件的第一电极上,通过按压机构将转印胶片上的发光元件层压在该第一电极上,再沿上述保护绝缘层的延伸方向移动该按压机构,将所述发光元件层转印到所述第一电极上。

本发明中,由于数据线等的布线为保护绝缘层所遮盖,当例如R、G、B等滤色片或具有这些颜色发光能力的发光元件层按顺序在基片上形成时,可以防止布线受到滤色片的处理液、外来气体等的沾染而品质恶化。而且,由于在列方向形成将布线遮盖的垄状的保护绝缘层,当滤色片等被转印时,在基片的列方向上已经构成了以该保护绝缘层为两侧壁的各像素空间。本发明中,朝着该垄状凸起的延伸方向(列方向)进行转印,可一边将来自上述像素空间的气氛气体在列方向朝前挤出,一边与基片之间无间隙地将滤色片等埋入。

依据本发明另一形态的是这样一种滤色片形成方法,该方法不是通过上述按压机构进行滤色片层或发光元件层的转印,而是通过将液体滤色片材料滴落到被转印基片上来形成滤色片;在被转印基片上沿规定方向形成多条并排延伸的布线以及将该布线遮盖的在基片上垄状突起的保护绝缘层,通过从滴出机构将液体的滤色片材料或发光元件材料排出,沿上述保护绝缘层的延伸方向相对移动该滴出机构,在所述被转印基片上形成所述滤色片层或发光元件层。

采用这种从滴出机构滴出液体滤色片材料与发光元件材料的方式,可以用保护绝缘层作为侧壁,由于上述材料被滴入由该保护绝缘层构成的像素空间,即使采用液体材料也能可靠防止液体材料流至侧壁外即相邻列的像素空间等情况。再有,由于让该滴出机构在保护绝缘层的延伸方向相对地移动,更加降低了附着不同颜色材料的可能性,而且在突出的保护绝缘层与基片平面构成的角部也能可靠地形成材料层。并且,可以有选择地让颜色材料从滴出机构滴落到相应的像素空间。如果这样有选择地排出材料,就不会在不需要的区域形成材料层,如此,既可以省掉将这种不需要的材料层除去的工序,还有助于材料费的削减。

在依据本发明另一形态的上述彩色显示装置及其制造方法中,在形成将所述像素电极和所述开关元件层间电连接的接触孔的形成区域和以所述保护绝缘层为列方向侧边的像素空间之间,设有滤色片挡块层。

该滤色片挡块层,在滤色片转印之前,形成于实现所述像素电极与所述开关元件之间的层间电连接的接触孔的形成区域的外围,在该滤色片挡块层与所述保护绝缘层之间,设有确保滤色片转印时能向列方向挤出气氛气体的通路。

滤色片较厚,且大多采用一旦形成便难以除去的材料,通过设置所述滤色片挡块层,可以在对显示质量有重大影响的像素电极和开关元件的接触区域的外围,预先设置在滤色片材料形成时难以嵌入的结构。

并且,即使在滤色片挡块层的形成区域,也可以一边在列方向挤出气氛气体一边进行滤色片的转印;且即使在该区域附近,也可在基片上将滤色片紧密地嵌入。这之后,由于该滤色片挡块层已经存在,大多采用较厚且一旦形成便难以除去的材料的滤色片就很难进入接触区域的外围。

在依据本发明另一形态的彩色显示装置中设有:在基片上矩阵形设置的多个开关元件,在列方向延伸、向对应的所述开关元件供给数据信号的多条数据线,在行方向延伸、向对应的所述开关元件供给选择信号的多条选择线,设于由所述数据线和所述选择线区划的像素区、经由对应的所述开关元件供给数据信号的像素电极,以及遮盖所述数据线形成的保护绝缘层;还有,在以所述保护绝缘层为列方向的两侧边的像素空间内,形成分给各像素的颜色的滤色片。

并且,在依据本发明另一形态的在相对设置的第一与第二基片之间封入液晶的彩色显示装置中,所述第一基片上设有:矩阵形设置的多个开关元件,在列方向延伸、向对应的所述开关元件供给数据信号的多条数据线,在行方向延伸、向对应的所述开关元件供给选择信号的多条选择线,设于由所述数据线和所述选择线区划的像素区、经由对应的所述开关元件供给数据信号、驱动位于其自身和对侧第二基片的电极之间的液晶的像素电极,以及遮盖所述数据线形成的保护绝缘层;还有,在以所述保护绝缘层为列方向的两侧边的各像素空间内,形成各像素所配色的滤色片。

在依据本发明另一形态的上述彩色显示装置中,确定所述保护绝缘层具有其上表面高度跟所述滤色片的上表面相当或者该面以上的厚度。

如上所述,本发明中滤色片设于数据线的形成区域附近,由于数据线为保护绝缘层所遮盖,可以防止在对应的R、G、B等滤色片在各像素中依次形成时,数据线受到滤色片的处理液或外来气体的沾染而品质恶化。

并且,由于该保护绝缘层遮盖在列方向延伸的数据线,在列方向构成由保护绝缘层确定两侧边的各空间,如果在该空间内如上述封入滴液的方式形成滤色片,就容易防止被分配不同颜色滤色片的邻接像素空间之间出现混色。尤其是,通过将保护绝缘层设置得具有充分厚度,用该保护绝缘层形成各像素的列方向侧壁,就可防止不同颜色的滤色片越过保护绝缘层进入邻接像素区。

当然,因为本发明中滤色片设置在像素电极侧,例如在液晶显示装置中,滤色片和独自控制透过光的像素电极之间的距离很小,可防止邻接像素处的透过光为观看者所感受。

依据本发明的另一形态,上述彩色显示装置是一种彩色电致发光显示装置,在该装置中,各像素处设置电致发光元件,所述像素电极为该电致发光元件的第一电极,按照对应于供给该第一电极的数据信号的电力,控制所述电致发光元件的发光强度。

依据本发明的另一形态,在基片上有多个像素,各像素中设有:在第一电极与第二电极之间设有发光元件层的发光元件,连接于数据线和选择线的开关用晶体管,连接于驱动电源和所述发光元件之间、按照经由所述开关用晶体管从数据线供给的数据信号、控制从驱动电源向所述发光元件供给的电力的元件驱动用晶体管;形成至少将沿列方向延伸的所述数据线遮盖的保护绝缘层,在以所述保护绝缘层为列方向的两侧边而构成的像素空间内,形成具有在所述多个像素中的对应像素的被分配颜色的发光能力的发光元件层。

如此,在本发明中,相当于在各像素处设有电致发光元件的彩色显示装置的滤色片层和发光元件层,如上述方式用遮盖数据线的保护绝缘层将邻接的像素形成区域隔开,通过采用转印方式或所谓的喷墨方式,可以跟液晶显示装置一样,防止邻接的其他颜色在被分配的像素间因材料相混造成的混色,获得色纯度高、颜色再现性优的彩色发光显示装置。

并且,依据本发明的另一形态,在各像素处设有上述电致发光元件的彩色显示装置中,所述保护绝缘层具有其上表面高度跟所述发光元件层的上表面相当或者该面以下的厚度。

由于在发光元件层上有(例如)多个像素共用的电致发光元件的第二电极形成,如上述保护绝缘层的厚度具有上述的相对关系,就可以使第二电极的形成面尽可能平坦。并且由于发光元件层的电阻较高,保护绝缘层的高度即使有所降低,也不致引起短路等问题。

依据本发明的另一形态,彩色显示装置中,在基片上矩阵形构成多个像素区,各像素区中,至少设有连接数据线和选择线的开关元件,以及被经由所述开关元件直接或间接供给数据信号的像素电极;沿所分配颜色不同的邻接像素区之间的交界而形成的垄状绝缘层,在以该绝缘层作为列方向的两侧壁构成的像素空间内,形成被分配颜色的滤色片。

依据本发明的另一形态,在彩色显示装置中,基片上有多个像素,各像素中设有:在第一电极和第二电极之间设有发光元件层的发光元件,连接于数据线和选择线的开关用晶体管,以及连接于驱动电源和所述发光元件之间、按照经由所述开关用晶体管从数据线供给的数据信号、控制从驱动电源向所述发光元件供电的元件驱动用晶体管;沿所分配颜色不同的邻接像素之间的交界而形成的垄状绝缘层,在以该绝缘层作为列方向的两侧壁构成的各像素空间内,形成具有被分配颜色发光功能的发光元件层。

如上所述,沿所分配颜色不同的邻接像素(像素区)之间的交界而布置垄状绝缘层,通过采用在以该垄状绝缘层为列方向的两侧壁构成的像素空间内分别形成被分配色的滤色片和发光元件层的结构,容易做到不与其他颜色相混地形成这些滤色片和发光元件层。并且,这些滤色片和发光元件层的形成,可以采用上述的转印方式、滴出方式等,而且采用上述任一方式均可容易且可靠地防止相异颜色材料的混入。

(附图的简单说明)

图1是液晶显示装置的一般电路结构的示图。

图2是传统片上滤色片结构的示图。

图3是依据本发明实施例1的彩色液晶显示装置的第一基片侧平面结构的示图。

图4是沿第三图A-A线的概略截面结构图。

图5是沿第三图B-B线的概略截面结构图。

图6是依据本发明实施例1的滤色片形成方法的说明图。

图7是依据本发明实施例1的滤色片形成工序的说明图。

图8是依据本发明实施例2的有源矩阵型有机EL显示装置的各像素的等价电路的示图。

图9是依据本发明实施例2的彩色有机EL显示装置的概略截面结构图。

图10是说明依据本发明实施例2的彩色有机EL显示装置的各像素的构成要素:第一TFT100和保持电容Cs的概略截面结构图。

图11是说明依据本发明实施例2的彩色有机EL显示装置的各像素的构成要素:第二TFT200和有机EL元件的概略截面结构图。

图12是说明依据本发明实施例2的彩色有机EL显示装置的各滤色片的形成方法的示图。

图13是依据本发明实施例3的滤色片形成方法的说明图。

图14是说明依据本发明实施例4的彩色有机EL显示装置的概略截面结构图。

图15是说明依据本发明实施例4的彩色有机EL显示装置的各像素的构成要素:第一TFT100和保持电容Cs附近的概略截面结构图。

图16是说明依据本发明实施例4的彩色有机EL显示装置的发光元件层的一例形成方法的示图。

(本发明的最佳实施例)

以下,借助附图就本发明的适用实施例(以下称实施例)进行说明。

(实施例1)

在本实施例中,作为彩色显示装置等中采用的滤色片层的形成方法,采用将设置在转印胶片上的滤色片层转印到被转印基片上的转印方法。并且,本实施例中,在转印前,先在被转印基片上形成沿规定方向并排延伸的多条布线以及将这些布线遮盖的垄状突起的保护绝缘层。按压结构对着这种被转印基片,例如在采用转印辊筒时,通过该转印辊筒将形成于转印胶片的滤色片层压印上去,同时朝该保护绝缘层的延伸方向移动辊筒,将滤色片层正确地转印到经保护绝缘层区划的像素区。

被转印基片,例如是液晶显示装置的第一基片和电致发光显示装置的元件基片等,在这样的基片上形成:滤色片,多个开关元件(例如TFT),向TFT供给数据信号的多条数据线,向对应的TFT开关元件供给选择信号的多条栅线,以及与TFT连接的像素电极等。

以下,参照附图说明设有片上滤色片的本实施例1的彩色LCD。图3示出了依据实施例1的彩色LCD的平面结构,图4示出了沿图3A-A线处的截面结构,图5示出了沿图3中B-B线处的TFT附近的截面结构。

如图3所示,在第一基片10上形成:行方向的栅线11,列方向的数据线30,并在它们的交点附近分别形成TFT1。TFT1包括栅电极11,两个导电区域(源区和漏区)以及沟道区,并设有通过激光退火等多晶化处理的硅(p-Si)层等构成的激活层16。

这里,如图5所示,栅电极11形成于TFT激活层16以下的膜层,所形成的TFT1为底栅型(bottom gate type)TFT。并且,本实施例中,所形成的激活层16跟在行方向一直延伸的栅线11构成横穿的图形,栅线11在跟激活层16相重叠的位置充当各TFT1的栅电极,栅线11兼具栅电极的作用。

在遮盖栅线(栅电极)11的整个基片面上形成栅绝缘膜12,在该栅绝缘膜12上,形成具有上述图3所示图形的激活层16,在其上形成将整个基片遮盖的层间绝缘膜14。

如图5所示,激活层16的漏区16d,经由贯穿层间绝缘膜14的接触孔C1跟层间绝缘膜14上形成的数据线30连接。并且,源区16s,经由贯穿层间绝缘膜14和平坦化绝缘层18的接触孔C2跟平坦化绝缘层18上形成的像素电极20连接。

数据线30,采用诸如铝(Al)等的高电导率材料在基片上列方向多条并排地形成,在上述接触孔C2处,跟位于下层的TFT1的漏区16d连接。这里,本实施例中,为了实现高精细彩色显示的目的,如图3所示,同色的像素的位置每行均错开,即采用所谓的三角形排列。为此,数据线30不是成直线一直延伸,而是每行错开地穿过像素间隙延伸。当然,本发明并不限于三角形排列,也可采用同色在列方向不错开的并排条纹排列,这时数据线30可以在像素之间在列方向直线延伸。

在本实施例1中,数据线30为厚的保护绝缘层32所遮盖。该保护绝缘层32充当被配给非同色滤色片的邻接像素之间的障壁,即具有作为各像素滤色片形成区侧壁的功能。换言之,该保护绝缘层32将列方向上邻接的被分配不同颜色的像素区各自分开。

并且,保护绝缘层32具有保护数据线30,使之不受在各像素区内形成滤色片的工序中使用的处理液(感光性滤色片的碱性显影液等)和外来气体等的影响的功能,还具有防止数据线断线及短路的作用。具有作为形成滤色片侧壁的功能的保护绝缘层32,如图4所示,最好其上表面具有跟滤色片50相当的厚度(高度)。举一例加以说明,在数据线30的厚度为0.5μm,R、G、B滤色片分别为1.5μm~2μm的场合,保护绝缘层32取1μm左右或以上的厚度即可。如此,为了形成厚度1μm左右的绝缘膜,以采用对上述碱性显影液具耐受性的、光硬化型的丙稀树脂等适合形成厚膜的绝缘材料为宜。还有,在整个基片上形成上述丙稀树脂层等以后,有选择地加以剔除,使保护绝缘层32形成如图4所示的遮盖数据线的垄状。

在形成保护绝缘层32后,形成滤色片。图6示出了本实施例的滤色片的转印方法。滤色片转印时,成为被转印基片的第一基片10上,形成栅线(栅电极)11、TFT1、数据线30及保护绝缘层32。然后按上述方式,保护绝缘层32在将数据线30遮盖的同时,在列方向垄状地延伸,在邻接的保护绝缘层32之间构成各个像素空间。

在表面形成的滤色片层42,如图相接触地设置在被转印基片上,通过位于转印胶片40上的转印辊筒46,将滤色片层42压附在第一基片10上。然后,一边维持这种压附状态,一边使转印辊筒46朝保护绝缘层32(数据线30)的延伸方向移动。如此,通过沿保护绝缘层32的延伸方向移动转印辊筒46,就能一边沿着行进方向将气氛气体从像素空间内排挤出来,一边进行滤色片层42的转印。

为了在对应的像素中形成全部R、G、B三色滤色片,必须按顺序在基片上形成每一种颜色的滤色片。图7概念性地例示了,以该顺序在对应的像素中形成R、G、B三色时的滤色片的图形制作。还有,以混入颜色的负性光刻胶材料作为滤色片材料,在采用这种材料的场合,通过对该滤色片材料进行曝光、显影处理,在不需要滤色片的位置将滤色片材料除去。

如图6所示,通过在列方向进行转印,在整个基片上转印了图7(a)所示的R滤色片后,在其上方设置形成了只在R像素位置开口的Cr等的曝光掩膜的掩膜基片,进行曝光处理。通过在曝光后进行显影的工序,将埋入光照射不到的R用像素空间以外的G用、B用像素空间处的R滤色片50除去。接着,以跟R相同的方式,按照图6所示方法(例如)将G滤色片全面转印到基片10上。这时,因为已经从R用像素以外的像素空间除去R的滤色片50,如图7(b)所示,在以G用及B用像素的保护绝缘层为侧壁的空间内埋入G用滤色片50G。

转印后,将R用和B用像素位置遮盖,通过用只在G用像素位置开口的曝光掩膜进行曝光、显影,将转印在G用像素位置以外的像素空间内的滤色片50G除去。最后,在整个基片上转印B用滤色片50B,如图7(c)所示进行曝光、显影后,就在残留的B用像素空间埋入了滤色片50B。

转印后,将残留在R用及G用像素位置的光刻胶刻蚀掉,将埋入B用像素空间的滤色片50G除去。最后,将B用滤色片50B按图6所示方法全面转印到基片上,就在残留的B用像素空间埋入了滤色片50B。

由上述说明可知,为了在第一基片的对应像素位置分别形成滤色片,在采用R、G、B滤色片的场合,至少要进行三次显影(刻蚀)处理。由于数据线的形成位置跟列方向上的邻接像素之间的边界一致,在这种滤色片形成工序中,该位置处被沾染显像液或外来气体的可能性很大。

但在本实施例中,该数据线30为具有足够耐受性的保护绝缘层32所遮覆,数据线30受到可靠防护,可以不受药液的侵蚀或氧化。而且,如图4所示,先将该保护绝缘层32的高度设置到跟滤色片50的上表面相当的足够高度,转印时就可借助该保护绝缘层32容易地将R、G、B滤色片分离地埋入各像素区。因此,就可防止邻接像素之间不同色滤色片的相混。为此,在滤色片形成时,以高出基片的垄状形成保护绝缘层32;由于滤色片的转印在该保护绝缘层32的延伸方向进行,可以一边排挤气氛气体一边进行转印,从而可以紧密贴合地在第一基片上形成厚滤色片50。

用上述方法在R、G、B各像素位置形成滤色片50后,在整个基片上形成使上表面平坦化的平坦化绝缘层18,并进而在该平坦化绝缘层18上的各像素位置处用ITO等透明导电材料形成像素电极20。该像素电极20,如图5所示,以贯穿平坦化绝缘层18及层间绝缘膜14而形成的接触孔C2跟对应的TFT1的源区16s连接,经由TFT1接收由数据线30供给的数据信号。

并且,在遮覆像素电极20的整个基片上,形成用以控制液晶初始取向的取向膜22,将取向膜全部形成的第一基片10跟第二基片80以一定的间隙相贴合,在第一与第二基片之间的间隙处封入液晶层70,便获得彩色LCD单元。再有,第二基片80跟第一基片10相对的一侧,形成ITO等材料的共用电极82和取向膜84。第一及第二基片10、80上的取向膜22、84是未经研磨的膜或经研磨处理的膜。

接着,就滤色片挡块层36进行说明。如图5所示,用以连接像素电极20和TFT激活层16的接触孔C2,因在平坦化绝缘层18与层间绝缘膜14两侧开口,高宽比大,且接触不良对显示不良会有较大影响。另一方面,滤色片比较厚,且采用一旦形成后不易除去的材料。为此,本实施例中,于滤色片转印工序之前在接触孔C2形成区域附近设置滤色片挡块层36,形成在滤色片转印时滤色片材料难以进入接触孔C2附近的结构。

滤色片挡块层36,在接触孔C2的周围以足够的厚度(高度跟滤色片的上表面相当)形成。并且,该滤色片挡块层36设置得不跟保护绝缘层32相连,以确保转印时在它与构成侧壁的保护绝缘层32  之间供气氛气体排出的通路38。该挡块层36,例如可以采用图6所示的L字母图形结构,该L字母图形在行方向延伸的边跟保护绝缘层32相离。如果这样,就可确保转印时气氛气体从该相离部分排出的通路38。还有,就防止滤色片材料进入接触孔C2形成区而言,挡块层36的L字母图形在列方向的边最好这样设置,从L字母图形在行方向的边朝转印进行方向延伸。挡块层36的图形,并不限于图示的L字母图形,只要能确保在列方向的通路38,也可以采用将接触孔C2周围三面包围的U字母图形,或者采用将四周全面包围但中央开口的环状图形。并且,也可采用行方向延伸的直线图形,虽然这样效果较差。

并且,由于该挡块层36和在列方向的上述垄状保护绝缘层32同时以同一材料形成,可以达到足够的厚度,并且可将形成工序的增加量限制到最小。还有,并非一定要形成该挡块层36,必要时可以省去。

上述说明中提及的TFT1的激活层16,如图3所示两次越过直线延伸的栅线11,在电气上形成双栅结构。但是,TFT1的形状并不只限于图3所示的形状,可以采用单栅极而非双栅极结构。并且,图5中,例示了其栅电极位于激活层以下的底栅极TFT,但是即使采用栅电极在激活层以上的顶栅极TFT,也不会改变滤色片的转印方式。

(实施例2)

以上的实施例1中,以彩色液晶显示装置为例进行了说明。本实施例2说明的采用有机EL元件等作为各像素中的显示元件的彩色EL显示装置,跟实施例1一样适合采用片上滤色片层。以下,参照附图进行说明。还有,以下说明中出现的对应部分中均采用同一符号,说明从略。图8示出了常说的有源矩阵型有机EL显示装置的各像素的等价电路结构,该装置各像素中设有对有机EL元件500进行独自控制的开关元件。

在图8所示的一例中,有机EL显示装置的各像素分别设有:有机EL元件500、第一TFT(开关用薄膜晶体管)100、第二TFT(元件驱动用薄膜晶体管)以及保持电容Cs。第一TFT100,其栅极在行方向延伸的栅线(GL)310连接,在用nch型TFT构成的场合,漏极连接于供给数据信号的数据线(DL)300,源极跟保持电容Cs的第一电极和第二TFT200的栅极连接。还有,如后文所述,相对设置的上述第一电极和第二电极将栅绝缘膜夹于其中而构成保持电容Cs,第二电极跟共用分电容线(SL)312连接。

第二TFT200采用pch型TFT构成的场合,其源极分别连接于从共用的驱动电源Pvdd开始布线的驱动电源线(VL)302,其漏极连接于二极管结构的有机EL元件500的正极。在该第二TFT200的栅极处施加的电压,基于在选择信号使第一TFT100导通时由数据线300供给的,经保持电容Cs保持的数据信号。而且,第二TFT200,从驱动电源线302向有机EL元件500的正极供给基于栅电压的电流,有机EL元件500按供给电流确定的强度发光。

图9是依据本发明实施例2的彩色有机EL显示装置中各像素的概略截面结构图。图10示出了上述第一TFT100的概略截面结构,图11示出了上述第二TFT200和有机EL元件500的概略截面结构。这里,第一及第二TFT100、200均具有顶栅极结构。并且,各TFT的激活层116及216共同采用,将形成于玻璃等透明基片101的非晶硅层通过激光退火处理同时被多晶化后所得到的多晶硅层。

第一TFT100的形成过程如下。首先,如图10所示,在激活层116上形成栅绝缘膜12,在栅绝缘膜12上形成跟栅线(GL)一体的栅电极310。如图10所示,该第一TFT100采用双栅极结构。激活层116的栅电极310的正下方是沟道区,在该沟道区的两侧搀入杂质分别形成漏区116d和源区116s。第一TFT100的源区116s,兼作保持电容Cs的第一电极,保持电容Cs的第二电极,在栅绝缘膜12上跟栅电极310用同样的材料同时形成。在栅电极310、保持电容Cs的第二电极及栅绝缘膜12上,形成层间绝缘膜14,在贯穿层间绝缘膜14与栅绝缘膜12的接触孔处,兼作漏电极的数据线(DL)300,跟第一TFT100的漏区116d连接。再在整个基片上形成将上述部分遮盖的平坦化绝缘层18。

第二TFT200中,如图11所示,跟第一TFT100相同,在栅绝缘膜12以上形成栅电极211,该栅电极211,跟上述保持电容Cs的第一电极电气连接。第二TFT200中,贯穿层间绝缘膜14和栅绝缘膜12形成的接触孔,将跟驱动电源线(VL)302成一体的(例如)源电极连接于激活层216的源区216s。并且,贯穿将上述部分遮盖而形成的平坦化绝缘层18、层间绝缘膜14以及栅绝缘膜12而形成的接触孔C2,将由ITO等构成的有机EL元件500的正极502跟激活层216的漏区216d相连接。

构成有机EL元件500的包括:正极502、发光元件层510以及负极520。如图9所示,正极502,每个像素各自形成;而由铝等金属构成的负极520,则为各像素所共用。以有机材料为主要成分构成的发光元件层510中,至少包括含有机发光材料的发光层506。如本例中,该层中从正极502侧开始,依次淀积了空穴输送层504、发光层506和电子输送层508。并且,本实施例2的发光元件层510中,与正极502相同,只有发光层506在各像素处以单独的图形形成。对于形成有机EL元件500各层的材料,本实施例2中不作特别限制,在迄今已知的低分子有机材料或高分子有机材料以外,还可采用具备相同功能的新材料。例如,发光元件层510的各层采用低分子有机材料,用真空蒸镀或印刷方法形成。并且,在采用高分子有机材料的场合,例如可以采用后述的喷墨方式来形成发光元件层510。当然,发光元件层510的形成方法不只限于这些。

本实施例2中,在如上所述的有源矩阵型有机EL显示装置中,如图9和图11所示,在各像素的正极502之下形成的平坦化绝缘层18和层间绝缘膜14之间,跟实施例1相同,各像素独立地设置滤色片层50。而且,如图9大略所示,基片上列方向布置的遮盖各数据线300的垄状形成的保护绝缘层32,构成滤色片的形成侧壁,在以该侧壁为界形成的像素区内,分别埋入对应的R、G、B滤色片层50。还有(图中未示出),在设置跟数据线300平行且用与该数据线300相同材料形成的驱动电源线VL302的场合,同样用保护绝缘层32加以遮盖,然后在由遮盖数据线300的保护绝缘层32和遮盖驱动电源线302的保护绝缘层32区划的像素区,埋入滤色片层50。但是,驱动电源线302也可用为全部像素所共用的层来构成,这种场合,跟图12所示的一样,以遮盖数据线300的保护绝缘层32为界。

滤色片层50的形成方法,实施例1的相同,如图12所示,用转印辊筒46将设于转印胶片40上的滤色片层42压贴到基片101上,通过在保护绝缘层的延伸方向推进该辊筒46,将滤色片层50转印到基片上(实际是在层间绝缘膜14上)。

如此形成的滤色片层50,由与邻接列之间形成的保护绝缘层32所分离,所以不会跟其他颜色的滤色片层50相混,在各有机EL元件500的正极502以下形成明显分界的图形。在这样形成了有机EL元件500的基片上设置滤色片层50的场合,各像素的有机EL元件500(例如)可以采用全部像素共用的材料。以图9为例进行说明,作为在每个像素处形成独自图形的发光层506,例如有可能设置具有白色发光功能的有机材料。在这种具有白色发光功能的发光层506处,由正极502经由空穴输送层504注入空穴,由负极520经由电子输送层508注入电子,就可获得白色光。然后,这种白色光透过透明的正极502,再通过R、G、B等各滤色片层50,就可让所要的R、G、B光透过透明基片101向外部射出,从而实现全彩色显示。并且,如果滤色片层50具有所要求的色变换功能,对于全部像素而言,可以采用其他任意发光颜色的元件。还有,图9中,在各像素的有机EL元件500的正极502和与邻接像素有关的有机EL元件500的正极502之间,由第二平坦化绝缘层518所隔开。并且,在本实施例2中,第二TFT200的激活层(216d)和与之连接的有机EL元件500的正极502之间,经由很深的接触孔C2连接;适当的方式是,如图11所示,跟实施例1相同预先在该接触孔C2的形成区域附近形成滤色片挡块层36。

(实施例3)

图13是依据本发明实施例3的滤色片层51的形成方法的概念性示意图。在上述实施例1与2中,如图6所示,用转印辊筒46将在转印胶片40上形成的滤色片层42转印到基片上,在各像素区埋入滤色片层50。与此形成对照,本实施例3采用喷墨印刷方式,即用类似喷墨打印机的滴出装置47将液体的滤色片材料43向像素区滴落。跟实施例1与2的共同点在于:在列方向垄状地形成将各像素区隔开的保护绝缘层32作为障壁,然后形成滤色片层51。

图示的滴出装置47中设有喷嘴头,该处排列了小喷嘴孔45,可从各喷嘴孔45有选择地滴出液体滤色片材料43。本实施例3中,喷嘴孔45的排列跟列方向延伸的保护绝缘层32垂直相交;使滴出装置47的位置和基片10相配合,将从对应喷嘴孔45有选择地滴出对应颜色的滤色片材料43,滴入以保护绝缘层32为邻接列像素之间的界壁而成的沟状像素形成区域。

如果只向同色的区域(沟槽区域)有选择地从喷嘴孔45滴出对应颜色的滤色片材料43,就可用最少量的滤色片材料43在各像素区形成必要的滤色片层51。当然,可以沿用如上图7所示的方法,例如首先在全部区域滴出R用滤色片材料43,经(例如)退火等方式固化后形成R用滤色片层51,然后从不需要的区域将R用滤色片层51除去,再依次形成G、B用滤色片层51;但是,为了节省材料费,最好只在对应的区域从喷嘴孔滴落对应颜色的滤色片材料43。

通过这种方法,可以准确地将液体滤色片材料43滞留在以保护绝缘层32为侧壁的形成像素的沟区,待该材料固化后便可获得足够厚度的滤色片层51。并且,在通过保护绝缘层32将位置接近的相邻列的不同色的像素区域隔开后,跟上述实施例1与2相同,在实施例3中,在滴出滤色片材料43的同时,让滴出装置47在保护绝缘层32的延伸方向(列方向)移动(也可让基片移动)。因此,能够可靠防止滴出装置47将不同色的滤色片材料43混入相邻列的像素形成区域。

(实施例4)

在实施例4中,用跟上述各实施例中滤色片层相同的转印方法来形成实施例2中说明的彩色有机EL显示装置等中所用的发光元件层。图14是说明依据本发明实施例4的彩色有机EL显示装置各像素的概略截面结构图。再有,该显示装置的各像素的电路结构跟图8所示的相同。图15中,还示出了与各像素的数据线300连接的第一TFT100的形成区域附近的截面结构。

本实施例4中,如图14所示,保护绝缘层332所覆盖的包括:给各像素提供数据信号的数据线300和与该数据线300平行的驱动电源线302(图15中省略了驱动电源线302)。

该保护绝缘层332和实施例1中的保护绝缘层32相同,采用丙稀树脂等材料,能确保足够的厚度,可以保护数据线300及驱动电源线302,并将相邻列之间的不同色的像素区域隔开。还有,就驱动电源线302而言,也有在另一层跟各像素共同形成而跟数据线300不在同一材料层的情况。在这种场合,由遮盖每列数据线300的保护绝缘层332将多个像素划分开。

又在层间绝缘膜14(也可以进一步形成平坦化绝缘层)之上,如图14所示,形成各有机EL元件500的正极502。而后,在该正极502列方向的两侧部分,突出地设置上述保护绝缘层332,将相邻列之间的像素形成区域划分开。然后,例如取代图12中的滤色片层42,分别用粘着用以形成发光元件层510各材料层(此处,包括空穴输送层504、发光层506及电子输送层508)的转印胶片40,用转印辊筒46将该转印胶片40压在基片101上,同时朝着保护绝缘层332的延伸方向从转印胶片40向基片(正极502)转印。在发光颜色不同的相邻列的像素区域,分别用粘着与之对应的不同颜色的材料的转印胶片40进行转印。

如此,利用足够厚度的保护绝缘层332,以转印方式将发光元件层埋入像素形成区域,从而可以防止在相邻列像素之间采用不同发光元件材料时发生材料的混杂。并且,在邻接像素之间发光元件材料被明确分开。因此,各有机EL元件500处可以显示高色纯度的光。如上所述,该发光元件层510至少包含发光材料(发光层),并且当有机EL元件500的光色不同时,要采用跟每种发光色相异的材料。因此,至少对于发光层来说,利用上述的保护绝缘层332,可以有效地将分配颜色不同的邻接列之间隔离。

并且,本实施例4中,由于保护绝缘层332构成了发光元件层510形成时邻接像素之间的分界,各像素的发光元件层510的上表面最好能跟该保护绝缘层332的上表面有大体一致的高(厚)度。如果太厚就不理想,因为发光元件层510上的各像素共同形成的有机EL元件500的负极520上会出现高度差。

还有,本实施例4中跟实施例2一样,在各有机EL元件500的正极502以下,如图9所示形成滤色片层50,对于有机EL元件500的发光元件层510,同样以保护绝缘层332为侧壁利用转印方法加以形成。

并且,发光元件层510,也可采用上述实施例3中所述的喷墨方式进行转印。图16概念地示出了以喷墨方式形成发光元件层510的状况。

例如,采用高分子发光材料等作为发光元件层的场合,可以如图16所示,让液态的高分子发光材料从滴出装置47以所谓的喷墨方式滴出,在基片上形成该发光元件层。还有,很多情况下,就以该高分子发光材料层构成发光元件层510。

在这种场合,在形成将数据线300遮盖的上述的保护绝缘层332后,在以该保护绝缘层332为侧壁将每种颜色以列分划开的像素形成区域,从滴出装置47滴出发光元件材料430,非常简单且没有渗出地形成发光元件层510。通常,以数据线300(形成驱动电源线302的场合,也包括该线302)为界挨近地设置不同颜色的像素的情况很多,即使在这种场合,也可以可靠防止液态的发光元件材料430流出而混入相邻列的像素形成区域。并且,跟实施例3相同,滴出装置47在保护绝缘层332的延伸方向(此处为列方向)上相对移动,因此其他颜色的发光元件的料滴430从喷嘴45处滴下的可能性很小,这样就可以进一步防止和其他颜色的发光元件材料的混杂。并且,滴出装置47的行进方向跟保护绝缘层332的延伸方向一致,因此在由该保护绝缘层332构成的像素形成区域的侧壁和基片(正极502)101的表面所形成的角部区域,也能准确地滴下发光元件材料430,由此可以防止发光元件图形的不完整等问题的出现。

另外,如果采用从上述的喷嘴45有选择地向对应的位置,同时地或者R、G、B三色分别地,滴落对应的R、G、B等发光元件材料的方法,可以用形成发光元件层最低限度所需的材料来分别形成R、G、B发光元件层,从而极大地降低材料费。

在上述各实施例中,对保护绝缘层32、332将数据线遮盖的结构作了说明,但是考虑例如制造工艺等的方便,在数据线不从保护绝缘层32、332的形成面外露的场合,就未必一定要将数据线直接遮盖。可是,即使在这种场合,也要作为垄状绝缘层将上述的保护绝缘层布置在所分配颜色不同且相邻的像素区域的分界处,并且,该垄状绝缘层构成各像素空间列方向的两个侧壁,在该像素空间内分别形成所分配颜色的滤色片和发光元件层。即使在这种场合,跟上述的各实施例一样,容易实现不使滤色片和发光元件层跟其他的颜色混杂。并且,这些滤色片和发光元件层的形成方法,可以是上述的转印方式和滴出方式等,在任何场合均能可靠且容易地防止异色材料的混入等情况的出现。例如,如上述图15所示,形成层间绝缘膜14以及遮盖数据线300的图11所示的平坦化绝缘层18,并在其上形成有机EL元件500的正极502等场合,数据线300的形成区域的上方,形成如图15所示的保护绝缘层332那样有足够高度的垄状绝缘层。而后,以该垄状绝缘层作为发光区域的侧壁,在该处以喷墨方式或转印方式形成发光元件层。

(发明的效果)

如上述说明,依据本发明,在遮盖布线的垄状保护绝缘层的延伸方向转印滤色片或滴出滤色片材料。由此,可以在转印行进方向或滴出装置行进方向一边将气氛气体挤出,一边以无间隙埋入的方式在保护绝缘层之间形成滤色片和发光元件层。

而且,由于在保护绝缘层遮盖布线后进行滤色片的形成,可以防止在滤色片的图形制作工序中布线暴露于处理液或外来气体等而受到不良影响。

另外,由于形成垄状保护绝缘层,该绝缘层成为邻接像素之间的分界壁,从而可以可靠地防止在分界附近不同颜色的滤色片材料或发光元件层相混。

并且,依据本发明,通过用保护绝缘层遮盖数据线,采用渗色小的片上滤色片方式,可防止滤色片形成工序中的数据线质量恶化,且由于有保护绝缘层作为分界位于邻接像素之间,能可靠防止不同颜色的滤色片材料相混合。因此,能够实现高品质的彩色显示。

还有,本发明中,利用上述垄状形成的保护绝缘层作为像素形成区域的分界壁,可以在该区域用上述的转印或滴出等方法形成有机EL元件的发光元件材料等,于是就能够形成无其他颜色材料混入的发光元件层。(工业上的应用可能)

本发明适用于如彩色液晶显示装置、彩色EL显示装置等的彩色显示装置。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号