首页> 中国专利> 常压蒸馏方法和常压蒸馏装置

常压蒸馏方法和常压蒸馏装置

摘要

在一种具有主热交换器(7)、一个包括一个用于将如此冷却的进气精分离成富氧部分和含氮部分的精馏区(13)和一个用于局部冷凝含氮部分的冷凝器(35S)的精馏塔(9S)、一个液氮储罐(31S)、一条将富氧液体送入该冷凝器(35S)的运输管路(18)的常压蒸馏装置中,该富氧液体不储存在该精馏塔底部。控制机构包括一个用于探测留在该冷凝器(35S)中的富氧液体液面高度的液面探测器、一个根据所述探测器的读数来控制输液阀(V3)开启度的控制机构,从而留在该冷凝器底部的所述富氧液体的液面几乎保持在设定高度上。

著录项

  • 公开/公告号CN1211458A

    专利类型发明专利

  • 公开/公告日1999-03-24

    原文格式PDF

  • 申请/专利号CN98118613.0

  • 发明设计人 宫下和彦;会田雅敏;

    申请日1998-08-19

  • 分类号B01D3/00;

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人郑修哲

  • 地址 法国巴黎

  • 入库时间 2023-12-17 13:17:14

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2003-10-08

    专利权的终止未缴年费专利权终止

    专利权的终止未缴年费专利权终止

  • 2001-10-31

    授权

    授权

  • 1999-03-24

    公开

    公开

  • 1999-03-03

    实质审查请求的生效

    实质审查请求的生效

说明书

本发明涉及一种常压蒸馏方法和常压蒸馏装置,其中利用一个装有塔盘或配置填料的精馏塔分离进气。

已知的常用蒸馏装置包括一个冷却经过压缩、冷却和去杂质处理的进气的主热交换器、一个包括一个用于将如此冷却的输入的进气分离成富氧部分和含氮部分的精馏区和一个局部冷凝分离出的含氮部分以提供回流液的冷凝器的精馏塔、一个通过输液阀将液氮作为回流液的一部分和制冷源而送往该精馏塔的液氮储罐、一条用于向该主热交换器供冷的供冷管路。

在这样的装置中,例如氮气主要是这样生成的,即通过压缩机对从大气中吸入的气体进行压缩,通过制冷器冷却该气体,通过吸收机构等从中去除杂质如二氧化碳和水分,接着利用废气的冷量在一个主热交换器中几乎将进气冷却到其液化点,将如此冷却的进气送往一个精馏塔,在精馏塔的精馏区中将进气分离成富氧部分和含氮部分,在一个冷凝器中局部冷凝分离出的含氮部分以提供回流液,另一方面,通过输液阀将液氮作为回流液一部分和制冷源地从液氮储罐中送往该精馏塔。

尽管在所述装置中作为制冷源地将留在精馏塔底部的富氧液体送往冷凝器并存储在冷凝器中,但为了即使在气态产品用量变化时也能在精馏区中稳定地进行精馏,这就要求留在冷凝器中的富氧液体的液面高度几乎保持不变以使置于该精馏区上部的或置于精馏塔外的冷凝器的冷凝能力(冷却能力)几乎不变。

控制冷凝器中的液面的已知方法包括:

(1)在J-A-61046747中提出了一种根据冷凝器的液面来调节将作为回流液的一部分和作为制冷源而进行供应的液氮量,而不用调节留在精馏塔底部和输入冷凝器中的液化气量。

(2)在J-A-64054187中提出了一种用于探测氮气产品压力并调节留在精馏塔底部且注入冷凝器中的液化气量(富氧部分)和调节氮气产品量的方法。此方法造成冷凝器中的液面变化,由此来应付氮气产品用量的变化,但是不可能保持冷凝器中的冷液面几乎不变以使冷凝能力(冷却能力)几乎保持不变。

但在J-A-61046747的方法中,即使作为回流液的一部分和制冷源而进行供应的液氮供应因液化气存储在精馏塔底部而得到调节,液化气在从精馏塔底部到冷凝器的管路中的流速也很少变化。其结果是,控制不可能跟上冷凝器中的冷液面的变化,因此不可能通过保持冷凝器中的冷液面几乎不变以保持精馏稳定性。即使当液氮供应是用J-A-61046747的方法调节的且流向精馏塔底部的液化气量是根据上述调节变化的,留在精馏塔底部的液化气的储量也几乎不变且其在所述管路中的流速难得变化。因此,不会提供即使是用于补偿冷凝器中冷液面变化那么多的冷量,这是因为液化气在一条使其从精馏塔底部流向冷凝器的管路中的流速是根据精馏塔底部的压力、冷凝器中的压力或设置于冷凝器和精馏塔之间的阀的开启度决定的。结果,不可能跟随冷凝器液面变化地进行控制。在极端情况下,冷凝器是排空的或充满的。

另一方面,在制造氧气的情况下,通常使用一个复式精馏塔,它包括:一个包括一个将象上述那样经过冷却的注入进气分离成富氧部分和含氮部分的中等压力精馏区和一个用于冷凝分离出的含氮部分以提供回流液的冷凝器的常压精馏塔;一个具有一个为了作为回流液地使用通过膨胀阀注入的且在该常压精馏塔中的部分回流液的且用于将从常压精馏塔底部注入的富氧部分分离成含氧部分和含氮部分的低压精馏区和一个允许所述含氧部分从该低压精馏区流入的冷凝器蓄冷区的低压精馏塔;一个通过输液阀向该蓄冷区供应液氧的液氧储罐;一条向主热交换器供冷的供冷管路。但是,即使在该常压精馏塔的冷凝器中,也容易产生与上述情况相似的问题。

本发明的一个目的是提供一种常压蒸馏装置和常压蒸馏方法,其中由于可以紧随着冷凝器的液面的变化而通过调节液化产品等的供应来进行控制,所以精馏稳定性可以得到提高。

根据本发明,提供一种如权利要求1所述的常压蒸馏装置和一种如权利要求7所述的常压蒸馏方法。

为实现上述目的,提供一种常压液化分离器,它包括:一个将经过压缩、冷却和去杂质处理的进气几乎冷却到其液化点的主热交换器;一个包括一个用于将如此冷却的注入进气分离成富氧部分和含氮部分的精馏区和一个用于局部冷凝分离出的含氮部分以提供回流液的冷凝器的精馏塔;一个通过输液阀将液氮作为回流液的一部分和作为冷源地送往该精馏塔的液氮储罐;一条向该主热交换器供冷的供冷管路,其特征在于,它还包括:一条将从该精馏区流向精馏塔底部的液氧作为冷源地送入冷凝器而不会在精馏塔底部留下富氧液体的输送管路;一个用于探测留在冷凝器中的富氧液体的液面高度的液面探测器;一个根据该液面探测器读数来控制液氮输液阀的开启度的控制机构,从而使留在冷凝器中的富氧液体的液面几乎保持在设定高度上。

因此在精馏塔底部不会留有液面。

本发明还包括一种常压蒸馏方法,它包括:通过一个主热交换器将经过压缩、冷却和去杂质处理的进气几乎冷却到其液化点;将如此冷却的进气送入一个精馏塔;在精馏塔的精馏区内将其分离成富氧部分和含氮部分并通过冷凝器局部冷凝分离出的含氮部分以提供回流液;另一方面,作为回流液的一部分和作为冷源地通过输液阀从一个液氮储罐中向精馏塔供应液氮,由此产生了氮气产品,其特征在于,它包括:将从该精馏区流向精馏塔底部的液氧作为冷源地送入冷凝器而不会在精馏塔底部留下富氧液体;通过一个液面探测器探测留在冷凝器中的富氧液体的液面高度;根据该液面探测器的读数来控制液氮输液阀的开启度,从而使留在冷凝器中的富氧液体的液面几乎保持在设定高度上。

本发明的第三方面在于一种常压蒸馏装置,它包括:一个将经过压缩、冷却和去杂质处理的进气几乎冷却到其液化点的主热交换器;一个包括一个用于将如此经过冷却的注入进气分离成富氧部分和含氮部分的中等压力精馏区和一个用于冷凝分离出的含氮部分以产生回流液的冷凝器的中等压力精馏塔;一个具有一个为了作为回流液地使用通过膨胀阀注入的该中等压力精馏塔的部分回流液的且用于将从中等压力精馏塔底部中注入的富氧部分分离成含氧部分和含氮部分的低压精馏区和一个允许所述含氧部分从该低压精馏区流入的冷凝器蓄冷区的低压精馏塔;一个通过输液阀向该蓄冷区供应液氧的液氧储罐;一条向主热交换器供冷的供冷管路,其特征在于,它包括:一条将富氧部分从该中等压力精馏塔底部送往该低压精馏塔而不会在所述底部留下富氧液体的输送管路,这条管路被用作输送向下流动到所述底部的富氧液体的输送管路;一个用于探测留在该蓄冷区中的冷液面高度的液面探测器;一个根据该液面探测器的读数来控制液氧输送阀的开启度的控制机构,从而该蓄冷区中的冷液面几乎保持在设定高度上。

本发明的第四方面在于一种常压蒸馏方法,它包括:通过一个主热交换器将经过压缩、冷却和去杂质处理的进气几乎冷却到其液化点;将经过如此冷却的进气注入一个中等压力精馏塔;在该中等压力精馏塔的中等压力精馏区内将所述进气分离成富氧部分和含氮部分并通过冷凝器冷凝分离出的含氮部分以产生回流液;另一方面,通过膨胀阀而作为回流液地将部分回流液注入该低压精馏塔并从中等压力精馏塔的底部向其输送富氧部分;在低压精馏塔中将它们分离成含氧部分和含氮部分;使所述含氧部分从低压精馏塔中流入该冷凝器的蓄冷区并通过输液阀从一个液氧储罐向该蓄冷区供应液氧,由此形成了氮气产品,其特征在于,包括将从该中等压力精馏区流向中等压力精馏塔底部的富氧部分输入低压精馏区,而不会在所述中等压力精馏塔的底部留下富氧液体,在此精馏所述的富氧液体并随后作为冷源地将其注入冷凝器的蓄冷区;通过一个液面探测器探测留在该蓄冷区中的冷液面高度并根据该液面探测器的读数来控制液氧输送阀的开启度,从而该蓄冷区中的冷液面几乎保持在设定高度上。

根据本发明的第一方面,设有一条用于将从该精馏区流向精馏塔底部的液氧作为冷源地送入冷凝器而不会在精馏塔底部留下富氧液体的输送管路。由于根据一个用于探测留在冷凝器中的富氧液体的液面高度的液面探测器的读数而通过控制机构来控制液氮输液阀的开启度,从而流向精馏塔底部的富氧部分的数量得到了调节并被紧接着传送给冷凝器,由此可以快速调节冷凝器中的冷液面。

结果,可以紧随着冷凝器中的冷液面变化而通过调节液化产品的供应来进行快速控制,于是可以提供一种其中的精馏稳定性可得到提高的常压液化分离器。

根据本发明的第二方面,将从该精馏区流向精馏塔底部的富氧液体作为冷源地送入冷凝器而不会在精馏塔底部留下富氧液体并通过一个液面探测器探测留在冷凝器中的富氧液体的液面高度,根据该液面探测器的读数来控制液氮输液阀的开启度,从而使留在冷凝器中的富氧液体的液面几乎保持在设定高度上。因此,可以获得与上述相同的效果。

结果,可以紧随着冷凝器中的冷液面变化而通过调节液化产品供应来进行控制,于是可以提供一种其中的精馏稳定性可得到提高的常压液化分离器。

根据本发明的第三方面,一条将富氧部分从该中等压力精馏塔底部送往该低压精馏塔被用作将向下流动的富氧液体输送到所述底部的输送管路,而不会在所述底部中留下富氧液体。因而与上述情况相似地,流向该底部的富氧液体可紧接着被引向低压精馏塔,于是可以通过用控制机构控制液氮输液阀的开启度而随着送入复式精馏塔的冷量的变化来进一步提高精馏稳定性。

结果,可以紧随着冷凝器中的冷液面变化而通过调节液化产品供应来进行控制,于是可以提供一种其中的精馏稳定性可得到提高的常压液化分离器。

根据本发明的第四方面,将从该中等压力精馏区流向中等压力精馏塔底部的富氧部分输入低压精馏区,而不会在所述中等压力精馏塔的底部中留下富氧液体,在此精馏区内精馏所述的富氧液体并随后作为冷源地将其注入冷凝器的蓄冷区;通过一个液面探测器探测留在该蓄冷区中的冷液面高度并根据该液面探测器的读数来控制液氧输送阀的开启度,从而该蓄冷区中的冷液面几乎保持在设定高度上。因此可以获得与上述相同的效果。

结果,可以紧随着冷凝器中的冷液面变化而通过调节液化产品供应来进行控制,于是可以提供一种其中的精馏稳定性可得到提高的常压液化分离器。

现在参见附图来描述本发明的实施例。如上所述的那样,由于本发明包括四个方面,所以将分别描述对应于第一、第二方面的第一实施例和对应于第三、第四方面的第二实施例。

图1是表示根据第一实施例的常压蒸馏装置例子的结构示意图;

图2是表示根据第二实施例的常压蒸馏装置例子的结构示意图;

图3是表示根据第三实施例的常压蒸馏装置例子的结构示意图;

图4是表示根据第四实施例的常压蒸馏装置例子的结构示意图。

如图1所示的那样,在空气经过滤件(未示出)并在压缩机1中被压缩到9kg/cm2G后,它经过导管2被引入氟利昂制冷器3中并首先被制冷器3冷却到约5℃,随后经导管4被引入一个预净化器5的吸收塔5a中。在此吸收塔5a中使压缩的进气脱去二氧化碳和水分(根据装置类型可以去除碳氢化合物),接着通过导管6将其引入主热交换器7。此时,如以下将描述的那样,利用由导管27引入的废气使预净化器5的另一个吸收塔5b开始再生,在这里通过一个换向阀VC控制吸收塔5a、5b的转换。

使引入主热交换器7中的进气与氮气和废气进行热交换,以下将描述此热交换过程,从而它被冷却到接近其液化点的温度。随后,通过导管8将冷却后的进气引入精馏塔9S的下层空间11S并在那里使其上升。

另一方面,如下所述地将液氮引入精馏塔9S的精馏区13的上部,通过精馏塔9S上升的气体在这里在一冷凝器35S中变成液体,所述的液化气体可作为回流液地向下流过精馏区13,从而通过与上升气体的气/液接触而得到精馏处理,由此产生了富氧液化气(富氧部分)并使这部分液化气向下流向精馏塔9S的底部,氮气(氮气部分)通过精馏被分离到上层。

所产生的且向下流向精馏塔9S的底部的富氧液化气和少量空气一起(即低于两倍的富氧液化气体积的气体,最好是低于10%)被吸入导管18中,而不会存储在精馏塔9S底部,并通过流孔(orifice)V2使其膨胀到1.9kg/cm2G,随后将其引入冷凝器35S的冷藏部。尽管将从精馏区13向下流向精馏塔9S底部的富氧液化气作为制冷剂地引入冷凝器35S且不会在精馏塔底部留有富氧液体的管路是由导管18和流孔V2构成的,但是输送管路可以是由自身基于压力损失调节的导管18以及全开阀构成的。

通过导管29将位于精馏塔9S上层的氮气引入主热交换器7,由精馏塔9S的氮气从留在冷凝器35S中的富氧液体中蒸发出来的富氧气体(废气)经导管24被引入主热交换器7。接着,分别使这些氮气和废气在主热交换器7中与压缩进气进行热交换。随后在室温和约8.7kg/cm2G压力下作为氮气产品(GN2)地通过导管30输出氮气,而废气将经过导管27而在1.7kg/cm2G压力下达到室温并被送入预净化器5的吸收塔5b,它在这里将被用作吸收塔5b的再生气以便从中脱除二氧化碳和水分。

包括精馏塔9S在内的冷箱36所需的所有冷是由从外界引入液氮储罐31S的并储存在其中的液氮(LN2)提供的,通过导管32输出液氮并将其注入精馏塔9S精馏区13的上部,此时阀V3的开启度是由一个作为控制机构的液面显示控制机构LIC控制的,所述控制机构使精馏塔9S的冷凝器35S中的液面保持在设定高度上。设有一个用于测量留在冷凝器35S中的富氧液体的液面的液面测量机构(未示出),输送液氮的阀V3的开启度是根据该液面测量机构的读数控制的,从而留在冷凝器35S中的富氧液体的液面几乎保持在设定高度上。

在氮气要求量超过精馏塔9S生产能力的情况下,通过一条从液氮储罐31S下部延伸过来的导管34排出液氮并使液氮在蒸发器33a中蒸发,蒸发出的氮气在其压力通过阀V4被调节到8.5kg/cm2G左右之后被送入导管30中。

另外,导管34的支管37具有一个蒸发器33b和一个装在其中的压力调节阀V5,该支管返回液氮储罐31S以便将液氮储罐31S的压力保持在预定压力下。

可有选择地设置导管40和阀V6以便排出冷凝器35S中的富氧液体,由此当碳氢化合物在富氧液体中富集时,整个富氧液体中的一部分或全部液体因机构的一系列作用而被排出。

另外,虚线所示的冷箱36是一个装有主热交换器7、精馏塔9S和液氮储罐31S的绝热容器,它构成了低温设备。

在经过过滤件(未示出)的大气中的气体被吸入压缩机1中并被压缩机1象图2所示的那样压缩到9kg/cm2G之后,通过导管2将其被引入氟利昂制冷器3中,它首先被制冷器3冷却到5℃左右,随后经导管4被引入一个预净化器5的吸收塔5a中。在此吸收塔5a中,使压缩进气脱去二氧化碳和水分(根据装置类型可以去除碳氢化合物),接着通过导管6将其引入主热交换器7。此时,如以下将描述的那样,利用由导管27引入的废气使预净化器5的另一个吸收塔5b开始再生。

使引入主热交换器7中的进气与氧气、氮气和废气进行热交换,此热交换过程以下将描述,从而进气被冷却到接近其液化点的温度。随后,通过导管8将冷却后的进气引入一个复式精馏塔9的中等压力精馏塔11的下层空间10中并在那里使所述的冷却气体上升。

另一方面,在复式精馏塔9的低压精馏塔12的底部,从一个由外界灌装液氧的液氧储罐31中通过导管32和减压阀V3将液氧引入主冷凝器35,通过中等压力精馏塔11上升的气体(氮气部分)在此主冷凝器中变成液体,使所述的液化气作为回流液地流经精馏区13,从而通过与上升气体的气/液接触而得以精馏,由此产生了富氧液化气(富氧部分)并使其向下流向中等压力精馏塔11底部并通过精馏使氮气分离到上层。

所产生的且向下地流向中等压力精馏塔11底部的富氧液化气和少量空气一起(即含量低于两倍的富氧液化气体积的气体,最好是低于10%)被吸入导管18中,而不会存储在中等压力精馏塔11的底部,并通过流孔V2使其膨胀到1.9kg/cm2G,随后将其引入在低压精馏塔12的第一上精馏区14A和其第二上精馏区14B之间的空间23。即,将富氧部分从常压精馏塔11底部引向低压精馏塔12的输送管路是由导管18和流孔V2构成的,且这条管路被用作输送向下流到所述的底部的富氧液体的输送管路而不会在精馏塔底部留下富氧液体。但是,该输送管路可以是由自身基于压力损失调节的导管18和全开阀构成的,这与第一实施例相似。

经过中等压力精馏塔11的精馏区13的精馏并在那里上升的氮气留在中等压力精馏塔11的上层。部分氮气在主冷凝器35中被液化并使部分液氮作为回流液地向下流过中等压力精馏塔11。通过在中等压力精馏塔11中与上升的气体的气/液接触的方式精馏回流液。另一方面,其余液氮留在中等压力精馏塔11的液氮存储部20中并使其经过导管21并在膨胀阀V1流出膨胀到1.8kg/cm2G左右,接着使其流向低压精馏塔12的第一上精馏区14A的上空间22。    

在低压精馏塔12中的废气(氮气部分)被导管24引入主热交换器7。由中等压力精馏塔11的氮气从留在低压精馏塔12底部的主冷凝器35中的液氧(冷)中蒸发出的氧气被导管25送入主热交换器7。接着,分别使氧气和废气与主热交换器7中的压缩进气进行热交换。在室温下且在约2kg/cm2G的压力下通过导管26输出氧气作为氧气产品(GO2),而废气将经过一导管27以便在约1.8kg/cm2G的压力下达到室温,随后将其送入预净化器5的吸收塔5b。如上所述的那样,所述废气在这里被用作吸收塔5b的再生气以便从中脱除二氧化碳和水分。

在同时需要氮的情况下,在大约8.7kg/cm2G的压力下通过导管19从中等压力精馏塔11的精馏区13上部中输出氮气并使其在主热交换器7中与进气进行热交换。接着,在室温下通过导管30输出所述气体作为氮气产品(GN2)。

包括复式精馏塔9在内的冷箱所需的所有冷是由从外界引入液氧储罐31的并储存在其中的液氧(LO2)提供的,通过导管32输出液氧并将其注入低压精馏塔12的底部,此时阀V3的开启度是由液面显示控制机构LIC控制的,所述控制机构使低压精馏塔12的底部的液面保持在设定高度上。即,设有一个用于测量留在冷凝器35中的液体的液面的液面测量机构(未示出),输送液氧的阀V3的开启度是根据该液面测量机构的读数控制的,从而留在冷凝器35中的液体的液面几乎保持在设定高度上。

在需氧量超过复式精馏塔9的生产能力的情况下,通过一条从液氧储罐31下部延伸过来的导管34排出液氮并使液氧在蒸发器33a中蒸发,蒸发出的氧气在其压力通过阀V4被调节到2kg/cm2G左右后被送入导管26中。

另外,导管34的支管37具有一个蒸发器33b和一个装在其中的压力调节阀V5,使该支管返回液氧储罐31的上部以便将液氧储罐31压力保持在预定压力下。

在图3的实施例中采用了与图1相似的精馏塔。所生成的且向下流向精馏塔9S底部的富氧液化气和少量空气一起(即含量低于两倍的富氧液化气体积的气体,最好是低于10%)被吸入导管18中,但它们不会存储在精馏塔的底部。接着,通过流孔V2使富氧液化气膨胀到1.9kg/cm2G并随后将其引入一个相分离器41。即,将从精馏区13向下流向精馏塔9S底部的富氧液体引入相分离器41而不会在精馏塔底部中留有所述液体的输送管路是由导管18和流孔V2构成的。该输送管路可以是由自身基于压力损失调节的导管18和全开阀构成的,而没有使用控制阀。在这种情况下,还可以令人满意地选择一个具有最适用于此装置的孔或带有开口的阀。

留在精馏塔9S上层的氮气全部经过冷凝器35S的一条通路,部分氮气在所述冷凝器中被液化并使其作为回流液地向下流动,而其余部分被导管29引入主热交换器7。在由相分离器41提供的且经过冷凝器35S的另一条通路的富氧液体接受精馏塔9S氮气的热量而获得气/液混合的富氧液体后,将其输入相分离器41并使其气/液分离,如此排出的富氧气体(废气)经导管24送入主热交换器7。

接着,分别使氮气和废气在主热交换器7中与压缩进气进行热交换。通过导管30并在大约8.7kg/cm2G的压力下输出氮气作为常温氮气产品(GN2),而使废气通过导管27以便在大约1.7kg/cm2G的压力下获得常温并如上所述的那样将其送入预净化器5的吸收塔5b,它在这里将被用作吸收塔5b的再生气以便从中脱除二氧化碳和水分。

相分离器41用于向冷凝器35S供应液体,供液量由其液面高度决定。例如,冷凝器35S和相分离器41通过导管42相通,从而冷凝器35S中的液面几乎等于气/液分离器41中的液面。在这种情况下,根据冷凝器35S类型而采用了各种在热交换中进行间接冷却的方式,例如罩-管型或铝焊型。至于气/液分离器41类型,采用了各种利用气液的质量不同的方案并例如采用了在其上部设有排气口而在其下部设有排液口的储罐。

包括精馏塔9S在内的蓄冷箱36所需的所有冷是由从外界输入液氮储罐31S并存储在其中的液氮(LN2)提供的。通过导管32输出液氮并将其输入精馏塔9S的精馏区13上方,而输液阀V3开启度是由一个作为控制机构的液面显示控制机构LIC调节的,从而相分离器41的液面保持在设定高度上。即,设有一个液面探测器(未示出)以便探测存储在气液分离器41中的富氧液体的液面的高度,并根据该液面探测器的读数来控制液氮输送阀V3的开启度,从而留在气液分离器41中的富氧液体的液面始终保持在设定高度上。

现在描述其它实施例。

尽管描述了一个其中冷凝器布置在精馏塔中的实施例,所述冷凝器也可以布置在精馏塔外。

根据本发明,根据冷凝器35S的液面来控制LN2(液氮)输送阀V3,所述输液阀控制并调节一个气体-液化气输送孔,从而在精馏塔9S底部的液面总为零(这是本发明的方法)。

采取以下步骤(1)-(7):

(1)降低冷凝器35S液面;

(2)开启阀V3;

(3)LN2流入量增加;

(4)增强的回流液向下流动;

(5)液化气供应量增加;

(6)冷凝器35S液面升高;

(7)冷平衡。

图4示出了与图3相似的另一个实施例。现在只描述这两个实施例之间的不同点。

在精馏塔9S外面和上面设有冷凝器35S,所有被指定为产品的氮气通过导管28被从精馏塔9S上层排出到冷凝器35b。通过由相分离器41输送的富氧液体的冷量冷却氮气并降低其压力以使其部分液化,所生成的气液混合物通过导管29被排出。作为导管29垂直段的导管29L是厚壁管,从而气体和液体可以在其上部和下部中被分离开。通过气/液分离获得的液体将作为回流液返回精馏塔9S,而所获得的气体将作为产品被输入主热交换器7。

设有另一个热交换器46以便在其排放时再生富碳氢化合物液体的冷量(废冷量),通过导管45注入其中的进气的一部分在这里与富碳氢化合物液体进行热交换以便降低温度,随后它通过导管47被输入气液分离器41中,于是富碳氢化合物液体的冷量得到回复。

尽管在上述实施例中描述一个其中控制机构包括一个与液面探测器成一体的LIC机构,但是该控制机构可以相对液面探测器独立地设置。

当实施本发明时,在以上说明书中提到的温度和压力仅仅是示范性的。因此,该温度和压力不局限于上述这些数值,因为它们可以根据各装置和部件的设计结构或工作条件而变化。

尽管在这里描述了一个其中液化产品储罐布置在装有精馏塔的蓄冷器中的实施例,但是液化产品储罐可以布置在装有精馏塔的蓄冷箱外面。在这种情况下,储罐或许布置在另一个蓄冷器中。

精馏塔底部设置成反锥形,以允许向下流向该底部的富氧液体易流向导管,为了进一步提高富氧液体的流动性,可以设置能够在反锥部中形成流动通道的导流槽。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号