首页> 中国专利> 用于处理具有在正交相位载波上的数字信号的NTSC信号的装置

用于处理具有在正交相位载波上的数字信号的NTSC信号的装置

摘要

一种残余边带调幅发射机,它利用一个平衡调制器来产生一个与电视信号的视频载波成正交相位的抑制载波,该发射机接收作为调制信号的一个编码的数字信号的二进制移相键控信号。使PSK的符号速率是视频信号的水平扫描行速率的倍数。在数据帧的连续对的重复的帧期间发射两次BPSK,该数据帧以与视频帧的速率相同的速率被重复,该PSK在发射机上经受部分响应滤波和接收机上经受高通行梳齿滤波。

著录项

  • 公开/公告号CN1111433A

    专利类型发明专利

  • 公开/公告日1995-11-08

    原文格式PDF

  • 申请/专利权人 三星电子株式会社;

    申请/专利号CN94119681.X

  • 发明设计人 J·杨;

    申请日1994-10-26

  • 分类号H04N11/14;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人王岳

  • 地址 韩国京畿道水原市

  • 入库时间 2023-12-17 12:39:53

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-01-05

    未缴年费专利权终止 IPC(主分类):H04N11/14 授权公告日:20030820 终止日期:20091126 申请日:19941026

    专利权的终止

  • 2003-08-20

    授权

    授权

  • 1996-06-12

    实质审查请求的生效

    实质审查请求的生效

  • 1995-11-08

    公开

    公开

说明书

本发明涉及用于数字信号埋设在模拟量电视信号中的发射机及用于恢复埋设在模拟量电视信号中的数字信号的接收机。

相对小(例如3至5IRE)的信号编码数字信息可以与复合视频信号混合在一起,如果对数字信号格式适当限制,则由这种复合视频信号产生的电视图象中不会很明显地看出数字信息。这是在由A.L.R.Limberg,C.B.Patel及T.Liu在其题为“用于处理具有埋设其中的数字信号的改型NTSC电视信号的装置”的美国专利申请中指出的,该专利申请号为08/108,311,申请日为1993年8月20日,这里将其结合作为参考。在美国专利申请No.08/108,311中描述的发明与这里所述的本发明一样均转让给了三星(Samsung)电子有限公司,根据预先签订的雇员协议是在雇用范围内转让作出的发明的。美国专利申请No.08/108,311描述用以符号位速,即以一扫描行频的倍数提供的串位数字数据对在二分之一扫描行频奇数倍上的副载波作移相键控(PSK)调制。美国专利申请No.08/108,311指出优先用于NTSC电视信号相继帧的连续对中反相调制副载波的重复帧。这种帧对中数据的重复使伴随着从NTSC电视信号检测的复合视频信号的PSK副载波在由复合视频信号产生出的图象中对于从屏幕上观察是很不明显的。这种帧对中数据的重复也提供了在数据接收机中使用帧梳齿滤波器从描述连续电视图象的静态部分的复合视频信号亮度部分中分离出PSK副载波的基础。美国专利申请No.08/108,311也指出优先用于NTSC电视信号相邻扫描行邻接对中反相数字数据的重复调制,这就提供了在数字信号接收器中使用行梳齿滤波器从复合视频信号的彩色信号部分中分离PSK副载波的基础。

这种过程产生了重叠NTSC电视信号频谱的宽带频谱,但是在前一频谱中的大部分能量落在后一频谱中的所谓Fukinuki“窗”或“孔”中。为了对什么是“窗”或“孔”得到了解,读者可参考T.Fukinuki等人著的“与现有标准全部兼容的扩展定义TV”,IEEE通信学报,1984年8月,Vol,COM-32,No.8第948-953页,及T.Fukinuki等人著“NTSC全兼容扩展定义TV原始模型及移动自适应处理”,IEEE通讯学会单行本:“IEEE全球通讯会议集”1985年12月2-5日No.4.6,第113-117页;它们所公开的内容结合在这里作为参考。1987年4月21日颁发给T.Fukinuki的美国专利US4,660,072,名称为“电视信号发射系统”也描述了Fukinuki“窗”或“孔”,并也结合在此作为参考。

当在其中埋有数字信号的NTSC电视信号在普通电视机的显象屏上重播出来时,落在亮度信号Fukinuki窗中的频谱能量趋于不能被在距离屏幕正常观看距离上或距离更远的观看者看到。在一定程度上,这是因为在一定距离上观看屏幕时由于人视觉系统有限空间分辨率引起的相邻行平均效应。在很大程度上,这是因为由于人视觉系统有限暂态分辨率及视屏荧光物质的余辉引起的帧平均效应。使用行梳齿滤波使由视频检测器提供的复合视频信号中的亮度及彩色信号分量分离的电视机去除了落在亮度信号Fukinuki窗中的频谱能量,所以不需依赖帧平均效应作为使数字视频信号在电视机屏幕上所观察到的图象中不明显的唯一机制。使用帧梳齿滤波的最新型电视机可以除去落入亮度信号的Fukinuki窗中的频谱能量及落入亮度信中Fukinuki窗中的频谱能量。但是,这种频谱能量会出现在未采用帧梳齿滤波的彩色电视机中作为彩色干扰噪音。保持彩色噪音合理地低的期望是对信号编码数字信息可准许幅值的主要限制。

在实际中,使用Fukinuki“窗”或“孔”来发送模拟量视频信息,附加视频信息的空间及暂态相关性/反相关性模型防止了信号的随机度,这是必要的,因为它完全地隐芷在该领域现有电视接收机接收的常规电视图象中,使得在视频检测器响应中低于1MHz的水平空间频率中的所谓“Fukinuki幻象”增加。Fukinuki幻影能作为对同相VSBAM图象载波幅度调制的PSK副载波存在。但是,能注意到Fukinuki幻影的可能性很小,这是由于这些PSK副载波的功率低及在帧间隔期间数字词重复的可能性低,在相继帧中数据强迫重复期间除外。

美国专利申请No.08/108,311描述了一种与VSBAM图象载波频率相同但相位正交的被抑制残余边带频率调制(VSBAM)载波,用来发送用数字调制的副载波。这个过程将Fukinuki幻影抑制到它们所占据的边带中VSB AM载波实质上为DSB AM的程度。发送在与VSB AM视频载波正交的抑制载波的VSB AM边带中数字信息的发送使得数字信息以相当低的功率发射,从天线以E2/R发射功率的情况比视频载波的VSB>

在US专利申请No.08/108,311所描述的数字信号接收机的每个中,正交相位的VSB    AM载波的同步检测使数字副载波恢复,而在延伸到0.75MHz频率的基带中实质不伴有复合视频信号能量。高于0.75MHz的VSB    AM视频载波开始从双边带调幅(DSB    AM)载波跃变到单边带调幅(SSB    AM)载波。复合视频信号用逐渐增加的效率被检测到1.25MHz的频率,在该频率上完成残余边带的滑移。在同样0.75至1.25MHz频率范围上数字副载波的检测效率逐渐下降到0.75MHz以下其值的一半。假如中频(IF)放大器通过残余边带,则检测正交相位VSB    AM视频信号的同步视频检测器对PSK副载波及不包含同步脉冲直接分量的残余NTSC复合视频信号产生响应。这使同步视频检测器对正交相位VSB    AM视频载波响应的动态范围下降,这就缓解了响应信号数字化的问题,没有因为量化效应失去低电平PSK副载波。

美国专利申请No.08/108,311描述了在正交相位VSB    AM视频载波同步视频检测器后级联连接一个低通行梳齿滤波器及一个高通帧梳状滤波器。该低通行梳状滤波器用于使具有半扫描行频率奇数倍频率的PSK副载波的频谱与NTSC信号、尤其是经过适当预滤波的NTSC信号的频谱的彩色信号部分的分离。该高通帧梳齿滤波器是用于使具有半扫描行频率奇数倍频率的PSK副载波的频谱与NTSC信号频谱的自由移动亮度信号部分的分离。美国专利申请No.08/108,311指导:在级联高通梳状滤波器响应信号中的NTSC信号的残留频谱可被视为伴有PSK信号的干扰信号。因此,在级联高通梳状滤波器响应中的NTSC信号的残留频谱可以用同步符号检测对照来排斥。

美国专利申请No.08/108,311提倡使用PSK载波的二进制移相键控,它的一个单边带(SSB)选出用于频率的转换,以形成抑制副载波的上边带,它处于二分之一扫描行频率的小奇数倍的频率上。该SSB    BPSK副载波的发生导致了发射机结构的复杂,而且该SSB    BPSK副载波的检测导致了数字信号接收器结构的复杂。在该数字信号接收机中,需要有一个或多个同步检测器对PSK副载波解调,及需有一个或多个具有自动相位及频率控制(AFPC)的振荡器用于产生一个用于对PSK副载波同步检测的未调制副载波。在AFPC中使用来使每个本机振荡器锁在水平同步脉冲、彩色同步信号、PSK抑制副载波或符号跃变信号上的锁相环易于产生与振荡器频率保持稳定有关的问题。当上边带SSB    BPSK在一副载波器上被接收时,副载波器的频率仅是100KHz左右,数字信号接收器使用一向上变频器作单边带滤波,及在正交相位视频检测器后面的向下变频器,以便对BPSK调制的同步检测。

这些复杂性及问题在这里所述的本发明中利用二进制移相键控正交相位VSB主载波本身,而不是它的副载波来加以避免。在数字信号接收机中,用于检测正交相位VSB视频载波的同步视频检测器直接检测BPSK调制信号。在0.75MHz以上当BPSK载波开始从双边带调幅(DSB    AM)载波转变到单边带调幅(SSB    AM)载波时检测效率下降。在0.75至1.25MHz频率范围上数字副载波被检测的效率逐渐减少到低于0.75MHz其值的一半,检测效率的这个值对于高于1.25MHz但是低于建立检测器带宽的低通滤波的滑移频率被保持住。在发射机中,用于移相键控的脉冲链的高频率可被预加强,以便当BPSK调制信号变成实质上单边带时补偿数字信号接收器处检测频率中的损耗。

美国专利申请No.08/108,311指出优先用于NTSC电视信号相邻扫描行的邻接对中BPSK反相调制的重复,以便提供用于从NTSC复合视频信号的抑制彩色副载波的干扰彩色信号边带中分离数字信号的更好基础。在长时间上,BPSK调制信号的重发射使数字发送速率减半;对于数字数据发送,试图使用已被彩色信号边带占据的NTSC复合视频信号基带频率带用于数字数据发送会在现有的大部分彩色电视机中产生彩色噪音。一种较好的系统折衷方案是使为发射进行数字调制的基带频率带变窄,使它在时间上不和由彩色信号边带占据的带共同扩张,并不重复NTSC电视信号相邻扫描行的邻接对中的反相数字调制。这种用于发送数字信息的带宽牺牲避免了在现有彩色电视机中引起彩色噪音的数字调制,而不对相邻扫描行的反相数字调制增加数字发送速率,以使牺牲的带宽被弥补。在美国专利申请No.08/108,311中,在相邻扫描行中重复的反相数字调制被低通滤波使PSK的功率增倍,并改进了它对作为干扰信号的NTSC复合信号残余的干扰的抵抗能力。在这个损耗很显著的范围上,可利用增加发射PSK的功率(例如将其从3IRE增加到4.5IRE)来弥补,因为彩色噪音的出现(当它的频率复盖了彩色信号频率时对发射的PSK的功率确立了实际限制)不是与调制信号窄带宽有关的问题。当数字调制不在相邻扫描行反相重复时,虽然完全抹除PSK接收的脉冲噪音出现的可能性有些增加,通过纠错编码抑制脉冲噪音可用低成本来获得。

不对相邻扫描行重复反相数字调制,以使得能用行梳齿滤波器从干扰彩色信号边带中分离数字调制信号,就对用于数据发送的信号设计提供了自由度,以便使行梳齿滤波能用来从干扰亮度信号中分离数字调制信号。电视图象的动态部分由一帧到另一帧不会重复,因此帧梳齿滤波将不会从数字调制信号中分离描述它们的亮度信号,该数字调制是在相继帧对的各帧中反相地重复的,这些帧对在时间上不重叠。描述电视图象动态部分的亮度信号具有在相继扫描行中相应水平位置上重复的明显倾向,故可用高通行梳状滤波来排斥。在相邻扫描行的邻接对中的数字数据的调制可被重复,以便提供使数据通过高通行梳齿滤波且不改变数据的基础,但是这使通过系统的长期数据速率减半,结果不能获得足够的补偿优点。

在这里将指出的更好的实践方式是在这种类型的发射机中使用部分响应滤波,这种类型是在其中作为二进制数字数据在数字信号接收机中恢复的数字部分响应滤波器的响应信号,当它作为输入信号提供给高通行梳齿滤波器时,将产生三重或另外多电平层次的数字数据。这种过程不会降低通过系统的长期数据速率。

本发明的一方面涉及利用对残余边带载波的二进制移相键控发送数字信息的系统,该载波通过抑制将与被复合视频信号作幅值调制的残余边带载波成正交相位。最好,该数字信息被置成串位形式,其位速是复合视频信号水平行扫描速率的倍数,后继的另外数据格式化过程在数据转换成模拟量以前被执行,用以对残余边带载波作二进制移相键控。连续的数据帧中的每个被确定为与复合视频信号的一帧具有相同的周期,每个数据帧具有的数据行数目等于复合视频信号一帧内水平扫描行的数目。连续的数据帧被以它们出现次序连续指定的各个模序数识别。串位数据通过一个部分响应滤波器产生出一种数据,该数据在数字信号接收器中易于在符号决定作出前由行梳齿滤波从伴有的复合视频信中的干扰残余部分中分离出来。在发射机中,这些数据被分配,以便在奇数的数据帧中发送。在每个奇数数据帧中部分响应滤波器的响应信号是用以产生下一偶数数据帧中发送的数据。这种数据的两次发送,但以相反的逻辑方向的发送,在电视接收机中提供了从伴随复合视频信号中分出的并从视屏上看到的数据伴随视频信号的帧平均。在一数字信号接收机中,数据的两次发送,但在相反逻辑方向上的发送,便于在符号决定作出以前进一步地从伴随复合视频信号的干扰残余部分中分离出来的帧梳齿滤波。

本发明另一方面涉及包括在这样发送的埋设在电视信号内的数字信息中的电视信号。

本发明的又一方面涉及用于接收通过残余边带二进制移相键控正交相位载波发射的数字信息的系统。在正交相位载波的二进制移相键控信号检测后,被测得的信号在施加到用于将被发射的数字信息恢复成串位格式的符号决定电路前被行梳齿滤波及帧梳齿滤波,以便抑制复合视频信号的伴随残余部分。

图1是用于发射在其中埋有数字信号的电视信号的电视发射机的整体电路概图,该电视发射机实施了本发明的一个方面。

图2,3,4及5是图1的电视发射机中可采用的各种部分响应滤波器的电路概图。

图6是详细表示图1的电视发射机用于对数字数据作数字滤波部分的电路图,由该部分产生出相移键控信号,该相移键控信号对抑制的正交相位视频载波进行调制。

图7及8的每个表示用于接收在其中埋有数字信号的电视信号并提取出所埋设的数字信号的各个数字信号接收器的电路概图,这些数字信号接收器的每个实施了本发明的另一方面。

图9及10的每个详细地表示在图7中的数字信号接收器可采取的各种形式的梳齿滤波器中的一种。

图11及12的每个详细地表示在图8中的数字信号接收机可采取的各种形式的梳齿滤波器中的一种。

图13是作为隔行扫描器工作的位速缓冲器的电路概图,它可用于图6中所示的图1电视发射机的一部分中。

图14是作为去隔行扫描器工作的位速缓冲器的电路概图,它可用于图7或图8的数字信号接收器中。

总体上,在附图中省略了均衡用的延时,以便使它们简化并使其易于理解。在视频信号处理器设计领域中的技术人员将了解需要这些延时来恰当地在时间上校准在不同的处理路径上遭受不同延时的象素或数据,这些不同延时是由于在这些路径上进行的不同处理引起的。在该领域中的技术人员将理解在何处必须有这些延时及这些延时的每个为多长,故对这些延时在以下不再描述或讨论。在逻辑电路方面,该领域中的技术人员理解怎样提供克服不希望的“逻辑竞态”条件所需的补偿延时或补偿执行逻辑操作中的潜在延时所需的补偿延时;故关于提供补偿延时的逻辑电路设计的细节在以下也不再讨论。此外,在本公开文本中表示出或描述到模数转换器(ADC)的地方,该领域中的技术人员将会理解在这种转换器的前面加上抗干扰低通滤波器的必要性,以及如何来实施它,故对此在以下也不再赘述。同样地,在本公开文本中表示出或描述到数模转换器(DAC)的地方,该领域中的技术人员将会理解在这种转换器的后面加上采样时钟抑制低通滤波器的必要性及如何实施它,因此以下对此也不再赘述。

图1表示用于发射具有在其中埋藏有数字信号的电视信号的电视发射机1。一个源2将一个或多个模拟量音频信号供给音频处理电路3,后者将一调制信号供给音频载波发射器4,用于对音频载波的频率进行调制。音频处理电路3包括使伴音与图象同步所需的延时。根据传统的实践,该音频处理电路3也包括用于模拟量音频信号的预加强电路,及可包括用于产生立体声及第二音频程序(SAP)副载波的装置,以便在提供给音频载波发射器4的调制信号中包括它们。频率调制(FM)的音频载波从发射器4通常供给到多路调制器5,用以和同相VSB    AM图象载波及正交相位VSB    BPSK数据载波作多路频率调制。在一个无线广播的电视发射机1中,该多路调制器5典型采用天线耦合网络的形式,并将产生的多路频率调制信号从发射天线6播送出去。一个用于有线广播系统首端的电视发射机将不具有用于无线广播中的发射天线6。该多路调制器5将采用不同的形式,来自所考虑通道的多路频率调制信号进一步与来自另外通道的多路频率调制信号作多路频率调制,并由线性放大器将产生的信号提供给有线广播系统的中继电缆。

在图1中,一个源7将作为调制信号基波的一模拟量复合视频信号提供给发射器8,后者又将VSB    AM图象载波供给多路调制器5,以便于频率调制(FM)的伴音载波进行多路频率调制。来自源7的模拟量复合视频信号中的垂直同步脉冲,水平同步脉冲及彩色同步脉冲群与由一电台同步信号发生器9提供的相应信号产生同步。在复合视频信号源7与电台同步信号发生器9之间的控制连接线10代表用于这种同步的装置。当源7是一个远程的复合视频信号发生器、例如市区演播室或与本地电视台联网的另一电视台时,则控制连接线10将是对电台同步信号发生器9的一种集中同步系统连接。当源7是一个本地摄象机时,该本地摄象机将经由控制连接线10从电台同步信号发生器9接收同步信息。这些和包括用于磁带录象机及电视电影的那些同步方案是对于该领域的技术人员所熟悉的。通常,使用一个时分多路器11将包括垂直同步脉冲、水平同步脉冲,均衡脉冲,彩色同步脉冲及消隐脉冲电平(通常称为“脉冲边延”)和同步脉冲组信息插入到作为图象载波发射器8调制信号的复合视频信号中,以取代原始的同步脉冲组信息。

图1中的电视发射机1与目前使用的发射机的不同处在于:还有一个VSB    AM发射器12产生一个用于NTSC复合视频信号的与VSB    AM视频载波成正交相位的残留边带双相位移键控(VSB    BPSK)抑制载波。这另一个VSB    AM发射器12可包括一个平衡调制器,同时对载波及对BPSK调制信号进行平衡;并可进一步包括一个90°相位移网络,用于从VSB    AM发射器8接收同相的视频载波及将正交相位的视频载波提供给平衡调制器。由发射器12来的VSB    BPSK信号,与来自发射器的受NTSC复合视频信号幅值调制的VSB    AM视频载波一样,供给到多路调制器5,也将与频率调制(FM)的伴音载波进行多路频率调制。源13将一个串位形式的数字信号供给到一个纠错编码器14,用于将纠错码的附加位插入到用于帧重发器15的串位位流中。帧重发器15提供每帧的数据,该数据作为输入信号接收两倍于其输出信号。来自帧重发器15的输出信号供给到一个部分响应滤波器16,该滤波器将相关性导入到相继的水平扫描线中相应点上的数据中。来自部分响应滤波器16的数字响应提供给一数模转换器(DAC)17,以便转换成一模拟量的键控信号。该DAC    17提供给一高频预加强及暂态整形滤波器18一个键控信号,该键控信号响应数字“0”是一预定正值信号,而响应数字“1”是一预定负值信号。模拟量调制信号的预定负电平与模拟量调制信号的预定正电平具有相同的绝对值。滤波器18的响应是提供给发射器12中一平衡调制器的键控信号,该平衡调制器也接收一个待调制的正交相位视频载波。将由NTSC复合视频信号幅值调制的VSB    AM视频载波提供给多路调制器5的发送器8被精心地设计及操作,以致能避免偶然的可干扰来自发送器12的正交相位VSB    BPSK大抑制载波的相位调制。因为用于PSK的正交相位VSB    AM载波是被抑制的,在其中VSB    PSK及VSB    AM载波相结合的信号的定相不是明显地区别于同相VSB    AM视频载波的定相。虽然图1表示的发射器8及12是彼此分开的,但在实践中发射器8及12可共用同一个上边带滤波器及末级放大级。

用于消除Fukinuki无信号区中明显亮度信号量的移动适配滤波器在该领域中已由在EDTV及电视磁带录象方面作出的工作而公知。这种在图1中由源7提供的复合视频信号的滤波将会减少对随后埋藏在复合视频信号中的副载波数字数据调制产生干扰的可能性,但是在复合视频信号中的变化仅引起显示屏上被看到的图象的可观察得出的变化。在使用折叠频谱亮度信号的电视磁带录象中,利用移动适配滤波器来准备用于将其高频半带折叠到其低频带的Fukinuki无信号区中的亮度信号,由此产生由早于频谱折叠的亮度信号占据的半带宽的折叠频谱视频信号。这样一种移动适配滤波器描述在美国专利US5,113,262中,该专利于1992年5月12日颁发给C.H.Strolle等人,其名称为“能有限带宽记录及重播的视频信号记录系统”,并且该专利已由其发明人遵循在作出发明的时刻该发明的转让即生效的协议转让给三星(Samsung)电子公司。

图2表示部分响应滤波器16可采用的一种形式160。数字输入信号以串位形式经由输入端子161施加到一个两输入的“异-或”(XOR)门162的第一输入端,该门的输出与一输出端子163相连接,用以在那里提供部分响应滤波器160的响应。该XOR门162的第二输入端从一个数字延迟线的读输出连接线接收对多路调制器165来的并提供给该数字延迟线164的写输入连接线的输出信号的一个延时响应。该数字延尺线164可作为以读后重写方式操作的一种循环编址线存储器来实施,它提供与一电视水平扫描线周期相等的“1H”延时。除去当作为控制信号提供给多路调制器165的最后一行解码结果为“1”,指示数据帧的最后数据行正提供到部分响应滤波器160时,多路调制器165在输出端子163上选择部分响应滤波器160的响应,用于将其施加到数字延迟线164的写输入连接线上。

当作为控制信号提供给多路调制器165的最后一行解码结果为“1”,指示最后数据行正提供到部分响应滤波器160时,多路调制器165将模2数据帧计数施加到数字延迟线164的写输入连接线。当一个帧对的最后帧的最后行期间这样施加的模2数据帧计数为“0”时,一行“0”被写入到数字延迟线164中,以致当下一对帧的第一数据行期间,通过部分响应滤波器160的数据没有改变。但是,当一个帧对的起始帧的最后行期间由多路调制器165选择的用于施加到数字延迟线164写输入连接线的模2数据帧计数为“1”时,一行“1”被写入到数字延迟线164中,以致当数据帧对中最后帧的第一数据行期间,通过部分响应滤波器160的数据是二进制反码。这引起了数据帧对中最后帧的下一数据行是该数据帧对中上一起始帧的相应数据行的二进制反码。

由部分响应滤波器160提供的数字滤波抑制了模拟量信号中的DC项值,该信号是将输出端子163上的数字响应的“0”及“1”转换为一键控信号的+1及-1幅值产生出来的,作为用于控制BPSK信号的发生。该数字滤波器在二分之一水平扫描行频率fH的奇数倍时呈峰值响应,而在水平扫描行频率fH的倍数时呈零响应。该数字滤波引起响应数据的PSK信号具有与亮度信号的梳状频谱成互补的一种梳状频谱,它在二分之一水平扫描行频率fH的奇数倍时呈零响应,而在水平扫描行频率fH的倍数时呈峰值响应。该部分响应滤波器160使PSK的频谱整形,以使得它将通过包括一个信号1H延迟线及一个减法器的两抽头高通行梳齿滤波器。这样一种高通行梳齿滤波器可位于数字信号接收机中,用于抑制具有在垂直对准象素间的良好相关性的亮度信号并作为用PSK的抑制信号降低它。

图3表示可采用的部分响应滤波器16的另一种形式166,它包括具有与部分响应滤波器160相同元件162-165的末级滤波部分。该部分响应滤波器166还包括一个与末级滤波部分相似的初级滤波部分。该初级滤波部分具有两个输入的异-或门167,输入端子161与第一输入端相连接,XOR门162的第一输入端与其输出端相连接,而非如图2的部分响应滤波器160中是与输入端161相连接。XOR门167的第二输入端从数字延迟线168的读输出连接线接收从多路调制器169提供到该数字延迟线168的写输入连接线的输出信号的延迟响应。该数字延迟线168象数字延迟线164一样,提供等于一个电视水平扫描线周期的1H延时。除了当作为控制信号提供给多路调制器169的最后行解码结果为“1”,指示数据帧的最后数据行正提供给部分响应滤波器166时,多路调制器169选择XOR门167的响应,用于将其施加到数字延迟线168的写输入连接线上。

当作为控制信号供给到多路调制器169的最后行解码结果为“1”,指示最后数据行正提供给部分响应滤波器166时,该多路调制器169对数字延迟线164的写输入连接线提供一个线“0”。这就在每数据帧的最后行期间将一行“0”写入到数字延迟线164中。这行“0”在下一数据帧的起始行期间被提供给XOR门167,因而数据的起始行由XOR门167传送到XOR门162,用于选择二进制补码,如同对于图2的部分响应滤波器160所描述的那样。

该部分响应滤波器166具有比部分响应滤波器160更尖齿状的梳齿响应,但是在二分之一水平扫描行频率fH的奇数倍时也呈零响应,及在水平扫描行频率fH的倍数时呈峰值效应。在数字信号接收器中,可使用三抽头式高通行梳齿滤波器使PSK信号恢复平坦频谱并作为用于PSK的抑制信号降低亮度信号。

图4是一个部分响应滤波器260的概图,它可在图1的电视发射机中作为部分响应滤波器16来取代图2的部分响应滤波器160。串位形式的数字输入信号经由输入端子261施加到二输入的异-或门(XOR)262的第一输入端,该异-或门的输出与输出端子263相连接,以便在那里提供部分响应滤波器260的响应信号。该部分响应滤波器260的响应信号施加到数字延迟线264的输入连接线上,该延迟线在“1H”延时后在其输出连接线上提供对来自XOR门262的输出信号的响应。XOR门262的第二输入端接收来自多路调制器265的输出连接线的信号,该多路调制器从初始行解码器28接收作为控制信号的初始行解码结果。初始行解码器28从计数器24接收数据行计数作为输入信号,用“1”输出信号响应指示该数据行是数据帧的初始行的数据行计数值,及用“0”输出信号响应数据行计数的每个另外值。除了当作为控制信号供给到多路调制器265的初始行解码结果是“1”时,该多路调制器265选择在数字延迟线264输出连接线上的延时响应,用以将其施加到XOR门262的第二输入端。当作为控制信号供给到多路调制器265的初始行解码结果是“1”时,该多路调制器265选拔当前模2数据帧计数的二进制反码,用以将其施加到XOR门262的第二输入端。

图5是一个部分响应滤波器266的概图,它可在图1的电视发射机中用来代替图3的部分响应滤波器166,它包括具有与部分响应滤波器相同的元件262-265的一个末级滤波部分。该部分响应滤波器266还包括一个与其末级滤波部分相似的初级滤波部分。这个初级滤波部分具有一个两输入的异-或门267,它的第一输入端与输入端子261相连接,XOR门262的第一输入端与它的输出端相连接,而非象图4的部分响应滤波器260中是和输入端261相连接。XOR门267的响应信号施加到数字延迟线268的输入连接线上,该延迟线在“1H”延时后在其输出连接线上提供对来自XOR门267的输出信号的响应。XOR门267的第二输入端接收来自多路调制器269的输出连接线的信号,该多路调制器269接收来自初始行解码器28的初始行解码结果作为控制信号。除了当作为控制信号提供到多路调制器269的初始行解码结果为“1”时,该多路调制器269选择在数字延迟线268输出连接线上的延迟响应,用以将其施加到XOR门267的第二输入端上。当作为控制信号供给到多路调制器269的初始行解码结果为“1”时,多路调制器269选择线“0”,用以将其施加到XOR门267的第二输入端。

图5的部分响应滤波器可被修改成将模2帧计数施加到多路调制器265上,而非是它的二进制反码,并将“1”施加到多路调制器269上,而非是“0”。图3的部分响应滤波器166可被修改成不是将模2帧计数施加到多路调制器165,而是施加它的二进制反码,并将“1”施加到多路调制器169,而非是“0”。

图6更详细地表示图1的TV发射机1中用于对数字数据作数字滤波并从其中产生移相键控信号的部分的结构。纠错编码器14将串位形式的数字信号提供给位速缓冲器20。最后,该编码器14是产生修正Reed-Solomon码的类型;并且该位速缓冲器20起到作为隔行扫描器的双重作用。该位速缓冲器20将数据扫描的原始顺序排成列,它与由VSB BPSK数据发射器12和由VSB AM视频发射器8发射的复合视频信号的相应水平扫描线同时地发射的最大数据行相横切。这样做就使得在水平方向上趋于相干的脉冲噪音及复合视频信号的中带频率对修正的Reed-Solomon码的干扰要比基于映入到沿水平扫描线的行的数据、而非基于映入到与水平扫描线相横切的列的数据操作的修正Reed-Solomon码的情况干扰更少的位。在任何情况下,位速缓冲器20是一个存储器,它在规律性定时的基础上对帧存储器21提供位,用于在并仅在改变数据帧的期间的写。数据帧被定义为525行符号的组,它们是以数据行扫描速率的倍数的符号位速出现的,其数据行扫描速率是与用于模拟量视频信号的水平扫描行速率相同的。BPSK符号是二进制数,但应用修改Reed-Solomon码的符号通常是2N位数据,N为小的正整数,例如为3,4或5。在其上每个修正Reed-Solomon码延伸的位长被选择得小于525(例如256或512),因此沿其位长不止一次的脉冲噪音不太可能破坏修正Reed-Solomon码的任何一个。

数据行及复合视频信号水平扫描线的相对相位是这样的,即每个数据行在时间上与相应的复合视频信号的水平扫描线同时发生。数据帧以和由源7提供的模拟量复合视频信号的帧相同的速率发生,但是合适的是使数据帧滞后视频信号帧9个复合视频信号的水平扫描行,其理由在本说明书的下文中揭示。从帧存储器读出在其写入后的第一数据,并在其被写入后的重写入第二数据帧前进行重读,以便产生输出信号,作为输入信号在数据帧的相继对的各个帧期间输入到部分响应滤波器16。对位速缓冲器20及帧存储器21的写及读是受帧存储组合控制电路22的控制的。

通常用于计8个帧周期数的并在所选垂直消隐间隔(VBI)扫描行期间将重影消除参考信号插入到复合视频信号中的发射器1的帧计数器包括作为其中一级的模2数据帧计数器23,它用于在数据帧的每个相继对的各帧期间对帧存储器21的操作作读及读后重写的定时。组合控制电路22也从数据行计数器24接收一个数据行计数信号及从符号计数器25接收一个符号计数,该组合控制电路22将这些信号提供给帧存储器21分别作为行寻址及行内读寻址信号。在图6中组合控制电路22提供给帧存储器21的数据行计数及符号计数信号一起组成全寻址信号AD。该电路22也产生一个用于帧存储器21的写启动信号WE,一个读寻址信号RAD,它在读期间与提供给帧存储器21的全寻址信号AD同步地提供给位速缓冲器20,当数字数据被选择性地发送时,电路22也产生一个用于帧存储器21的读启动信号RE。

更具体地,其操作方式如下。数据帧的计数位从帧计数器23供给到组合控制电路22,用于仅当模2数据帧计数位是“0”时产生用于帧存储器21的写启动信号。组合控制电路22提供读启动及写启动信号,它们规定当模2数据帧计数位为“0”时使帧存储器工作在读后重写方式中。当模2数据帧计数位为“1”时,组合控制电路22仅提供读启动信号。

最后行解码器27接收来自数据行计数器24的数据行计数信号并产生用于部分响应滤波器16中多路调制器165的控制信号,如果在滤波器16中也使用多路调制器169时,也产生用于它的控制信号。最后行解码器27提供“0”输出信号作为对所有数据行计数值响应的最后行解码结果,但除对数据帧中最后行的指示外,那个“0”输出信号规定滤波器16中的多路调制器165(及多路调制器169,如果使用的话)执行由滤波器16作的常规部分响应滤波。对数据行计数的响应是对数据帧中最后行的指示,最后行解码器27提供“1”响应滤波器16中的多路调制器165(及多路调制器169,如果使用的话),规定对1H延迟线164(及1H延迟线168,如果使用的话)用对于下一数据帧的滤波器16中的初始条件加载。模2数据帧计数器23对多路调制器165提供模2数据帧计数作为交替输入信号,当最后行解码器27提供给多路解调器165“1”作为其控制信号时,该交替输入信号被选择到1H延迟线164的写输入连接线上。

图6表示的符号时钟电路30,除符号计数器25外还包括电压控制振荡器(VCO)31,过零检测器32,255计数解码器33及自动频率及相位控制(AFPC)解码器34。符号计数器25包括8个二进制计数级。过零检测器32,其更合适的名称可能是过平均轴线检测器,只要是当振荡器30的正弦振荡波在预定方向上通过它们的平均轴线时该检测器32就产生一个脉冲。过零检测器32通常包括:产生对VCO31的正弦振荡波响应的方波的限幅放大器,产生对该方波的过渡段响应的脉冲的微分器,及一个限幅器,用以分离一个极性的脉冲,将其提供给帧存储组合控制电路22用于定时。这些脉冲也提供给符号计数器25,用以在每个相继行中被计数,由此产生出供给到组合控制电路22的符号计数信号。255计数解码器33对达到255的符号计数进行解码,用以产生一个脉冲。取代使符号计数简单翻转成数值0,因为满计数是2的整数幂,由255计数解码器33来的每个脉冲可用来在被过零检测器32提供给计数器25的下一脉冲时使计数器25复位,于是使符号计数回到数值0。该255计数解码器33将脉冲提供给AFPC检测器34,用于与水平同步脉冲H相比较以产生一个AFPC电压提供给VCO31。这就形成了一个负反馈环,它使VCO31振荡的频率为水平扫描频率的255倍,或4027972Hz。

现在将考虑由模2数据帧计数器23及数据行计数器24与模拟量视频信号的帧作同步计数的一种方法。在用于如本说明书中所述的系统中的数字信号接收器中,最好使再生数据帧计数的计数器对模拟量复合视频信号每帧第9行的开始同步,即正好在这个帧初始场的垂直同步脉冲的后沿之后。在此情况下,在数字信号接收器中产生数据行计数的计数器复位到模拟量复合视频信号每帧第9行开始时的预定计数值。在图6中所示的发射机1的部分中的模2数据帧计数器23及数据行计数器24的计数同步能符合所需接收器的实际应用。

255计数解码器33的输出信号作为第一输入信号提供给一个两输入的AND门36。电台同步发生器9将垂直同步脉冲V输送给后沿检测器36,该检测器在复合视频信号第9行结束时提供脉冲,并在复合视频信号第271行的中点时提供输出信号作为AND门35的第二输入信号。AND门35的响应由在复合视频信号第9行结束时的数据帧结束脉冲组成。这些数据帧结束脉冲的每个作为触发脉冲施加到模2数据帧计数器23,以使得数据帧计数信号前进,并也施加到数据行计数器24,使它的数字行计数复位到一预定初始值。在实践中,255计数解码器33可以省去,从符号计数器25的最后二进制计数级来的进位脉冲可供给AFPC检测器34及AND门35,以取代检测器33的输出信号。

图7表示从一装置如天线42接收在其中埋芷数字信号及从中取得所埋芷的数字信号的一种数字信号接收器41。调谐器43选择由其中第一检波器检波的电视通道,该第一检波器是传统超外差式的可调谐降频变换器,用于将选择的电视信号转换成一组中频及一图象频率组。视频中频(IF)滤波器44选择视频中频用于作为输入信号施加到一中频(IF)放大器45,并拒绝图象频率组。遵循现行习惯,可使用一表面声波(SAW)滤波器作为视频IF滤波器并在单片集成电路(IC)中构成视频IF放大器45,它作为无中间级调谐的多级放大器。视频IF放大器45对同相同步视频检波器46及对正交相位同步视频检波器47提供放大的视频IF信号。振荡器48以标准频率45.75MHz振荡并将其振荡波未移相地供给同相同步视频检波器46,及由移相网络49以90°的迟后相位移供给到正交相位同步视频检波器47。振荡器48具有响应正交相位同步视频检波器47的输出信号的自动频率及相位控制(AFPC)。同步视频检波器46及47通常与视频IF放大器45及振荡器48部分一起包括在一个IC中。每个视频检波器46及47可以是恢复载波型的或是真同步型的。由同相同步视频检波器46恢复的同相修正复合视频信号供给到水平同步信号分离器50及垂直同步信号分离器51,它们从同相修正复合视频信号中分别恢复水平同步脉冲及垂直同步脉冲。

至今所考虑的数字信号接收器41的情况一般是TV接收机设计领域的技术人员所熟悉的,虽然该视频IF滤波器44最好作为约3.5MHz宽并定在45.25MHz的中心。该视频IF滤波器44提供彩色干扰抑制及同相伴音干扰抑制,而在正交相位视频检波器47后面无需彩色及同相伴音干扰抑制滤波。(当数字信号接收器41与电视接收机构成一体时,视频IF滤波器将要加宽,并且在正交相位视频检波器47后面要用滤波来提供对彩色及同相伴音干扰的抑制)。正交相位视频检波器47的带宽要比符号位速宽一些,以致不削弱BPSK响应信号“尾部”中的上端频率。正交相位视频检波器47检测仅伴有频率在750KHz以上的NTSC复合视频信号部分的键控脉冲。

在实际中,数字接收器41通常包括重影抑制电路,它没有在图7中分开地及明显地示出,但可以是在美国专利申请No.08/108311(申请日为1993年8月20日)中详细描述的那种类型。每个同相及正交相位视频检波器46及47在其同步检波器本身后面分别包括重影消除及均衡滤波器,它们与包括在另外视频检波器中的同步检波器本身后面所使用的那些相似。这两个重影消除滤波器的可调节参考平行地响应于计算机作出的计算而被调节,而这两个均衡滤波器的可调节参数也平行地响应于计算机作出的另一计算而被调节。重影消除参考(GCR)信号在发送时延伸到4.1MHz的频率,但在数字信号接收器中因其受限制的IF带宽仅延伸到2.5MHz左右,它由同相视频检波器46从所选的视频信号的垂直消隐间隔(VBI)扫描线中分离出来。该GCR信号被数字化并作为输入信号提供给计算机,用于计算重影消除及均衡滤波器的可调节参数。换种形式或附加地,可以检测正交视频检波器47响应信号中的直流或低频成分并用来作为计算重影消除滤波器可调节参数的基础。

在图7的数字信号接收器41中,由符号计数器52对过零检测器53响应来自压控振荡器54的正弦振荡信号产生的脉冲计数,产生出符号计数信号。解码器55对达到255的符号计数进行解码产生一个脉冲,它在由过零检测器53供给计数器52下一脉冲时使计数器52复位,使符号计数回到数值“0”。由解码器55产生的脉冲提供给AFPC检测器56,用于与由水平同步信号分离器50分离的水平同步脉冲H相比较,并由可控延迟线57可调节地延时一个符号间隔的分数值。比较结果在AFPC检测器56中被低通滤波,产生出一个自动频率及相位控制(AFPC)电压信号施加到VCO54。这些装置控制由锁行VCO54提供的振荡频率为水平扫描行频率的256倍或为4027972Hz。词“锁行”用于与可控振荡器装置相关方面,使它的振荡频率保持在15734.264Hz扫描行频率的恒定比例上,这通常是由AFPC电路作出的,该电路将其振荡频率除以适当系数再与水平同步脉冲相比较。

被正交相位视频检波器47检到的键控信号及高于750KHz频率的NTSC复合视频信号附带部分提供给一匹配滤波器58,它响应键控信号但仅选择复合视频信号中高于750KHz的附带频率分量部分。该匹配滤波器58提供一峰值响应信号,它与发射机中滤波器18的暂态整形部分的滑移相匹配,使PSK带宽展宽得足以降低符号间的干扰。该匹配滤波器58也可提供另一峰值响应,用以补偿正交相位视频检波器47检波效率的滑移,这是由于VSB    BPSK实质上在0.75至1.25MHz间的频率范围上变得愈加单边带并在从1.25MHz向上延伸的频率范围上实质是单边带的。但是,因为不同TV发射机的残留边带滤波器彼此具有不同特性,因此对正交相位视频检波器47的检波效率的滑移补偿的峰值响应可能在每个TV接收机1中更好地作到,即利用修改暂态整形滤波器18除暂态整形外还提供合适的峰值响应。在发射机1中这种二进制键控信号的附加峰值或预加强无论如何将会增加高于0.75MHz的与亮度信号一起发射的BPSK的高频成分。

来自匹配滤波器58的响应信号提供给高通行梳齿滤波器59作为其输入信号,它是用于图1的发射机1中部分响应滤波器16的图2中部分响应滤波器160的匹配滤波器。该高通行梳齿滤波器59抑制复合视频信号中伴随检测键控信号但不呈现行对行变化的分量。该高通行梳齿滤波器59最好是模拟量类型的。作为模拟量类型的高通行梳齿滤波器59可以降低用于将测得的PSK数字化的模数转换器(ADC)65的输入信号的动态范围。这就有利于选择ADC65中量化电平的有限数目,以降低量化噪音对PSK的破坏。一个具有10位分辨率的ADC肯定能满足要求,而具有8位分辨率的ADC大概也能满足要求,使仅当以符号位速采样时恢复3IRE的PSK的幅值。以符号位速从ADC65的采样具有最佳相位,就避免了需用符号位速的倍数采样以便最大程度地减小了符号间的干扰;并且所产生的低数字采样速率就使随后数字滤波器中的硬件得以节约。从ADC65以符号位速、具有最佳相位的采样是同步符号检测的一种形式,它对复合视频信号中以符号位速呈现变化的但处于与以符号位速采样正交相位中的分量的响应进行抑制。符号计数器52提供符号计数的最小有效位及它的二进制反码作为4MHz方波给ADC65,用于在其数字化期间以符号位速对ADC65输入信号采样的定时。

高通行梳齿滤波器59是模拟量类型的,它提供与差不多同时的残余复合视频信号充分无关的PSK信号,并且该信号包括数据跃变时的完整信息。过零检测器66检测来自匹配滤波器58响应的过零点,并将它们供给到脉冲相位鉴别器67。该脉冲相位鉴别器67选择地检测匹配滤波器58响应的过零漂移,该过零是由过零检测器66检测到的,漂移是相对于过零检测器53检测到的可控振荡器54振荡信号过零的正确相位而言的。脉冲相位鉴别器67将这些选择性检测的漂移作低通滤波,进行采样及保持,由此产生控制信号来调节可控延迟线57的延时,使该延迟线提供给AFPC检测器56水平同步脉冲H。在数字化时对ADC65输入信号以符号位速采样的相位被相应地调节以减少符号间的干扰。

由脉冲相位鉴别器67作的选择性检测是在垂直消隐间隔期间作出的,这时正交相位视频检测器47对复合视频信号的响应预期为“0”值。在更复杂的装置中由同相视频检波器46来的视频输出可供给一高通滤波器,因而750MHz以上的复合视频信号的幅值能被被监控。然后,当该幅值基本为零时,实施由脉冲相位鉴别器67作的选择性检测。由脉冲相位鉴别器67作出的选择性检测不但是在垂直消隐间隔期间,而且也是在图象扫描的部分期间作出的。因此,可控振荡器54的振荡可能在一图象场中相位稍微具有滞后误差。

用于调节振荡器锁线相位的装置是由本发明人的合作者Jung-Wan    Ko开发出的类型。相对于由可控延迟线57提供的,调节延迟水平同步脉冲控制可控振荡器54的振荡频率及相位的AFPC环提供了一种滤波功能,它可避免ADC65的时钟出现“失误”或在相位调节期间出现明显的周期缩短。如果精确相位调节试图在ADC65时钟本身中进行则常常会出现这种失误。

垂直同步分离器51将对分离的垂直同步脉冲V的“有损耗”积分响应供给到一阈值检测器68,该检测器的阈值电压选择得仅当垂直同步脉冲在大于5.5扫描行及小于6.5扫描行上进行积分时才会超出该阈值。阈值检测器68的输出信号仅当它其输入信号超过阈值电压时为“1”,否则为“0”,该信号作为第一输出信号供给一个两输入的AND门69。检测器55产生“1”,用于每个数据行中符号计数的最后值(在水平扫描行结束时),否则产生“0”,它将其输出信号供给AND门69,作为该门的第二输入信号。从AND门69输出的“1”响应在复合视频信号初始场开始时产生的垂直脉冲后沿,并提供对这些后沿的每个作响应的相应数据帧结束信号,但是不对在帧的各初始场及最后场之间出现的垂直脉冲的后沿作出响应。

在AND门69响应中的数据帧结束脉冲供给到模2数据帧计数器70作为计数输入(CI)信号,由此使再生的数据帧计数信号前进,它对发射机中的数据帧计数信号偏移一扫描行。如在美国专利申请No.08/108 311中所指出的,在TV发射机1中及在数字数据接收器41中设置用于同步数据帧计数的最佳方式是利用参考重影消除参考(GCR)信号,它们出现在四帧周期的第19扫描行中的脉冲相位及Bessel线性调频脉冲相位的预定排列中。产生模2数据帧计数的单级二进制计数器70通常是产生模2N数据帧计数信号的多级二进制计数器中的一个级,其中N是至少为2的一个正整数,该多级二进制计数器用于对重影消除参考(GCR)信号的累加作定时。

在AND门69响应信号中的数据帧结束脉冲也作为复位(R)信号供给数据行计数器71使作为其输出信号再生出的数据行计数复位,该计数应为524,被复位成数值“0”。数据行计数器71连接成对由水平同步信号分离器50提供的水平同步脉冲进行计数。数据行计数信号用于对电路(未在图7中明显地表示出)中包含GCR信号的VBI扫描线的选择进行控制,用于使计算机取得数据,由该数据计算用于视频检波器46及47中所含的均衡及重影消除滤波器的可调节滤波参数。

ADC    65提供带有某些大于750KHz残余复合视频信号的数字化键控信号给一高通帧梳齿滤波器72。该高通帧梳齿滤波器72包括一个数字减法器73及一个对信号采用作响应的数字帧存储器74,对该存储器的输入接口提供那些信号采样,在其输出接口上较后地输出一帧扫描的持续时间。数字帧的存储器74适于构成工作在读后重写方式的RAM。该RAM从计数器71接收数据行计数信号作为行寻址(LAD)信号,及从计数器52接收符号计数信号作为符号寻址(SAD)信号。减法器73从ADC65接收对当前帧数字键控信号的采用作为被减数输入信号,及从帧存储器74接收对前一帧的数字键控信号的采样作为减数输入信号。来自减法器73的差值信号是高通帧梳齿滤波器72的响应信号,从其中去掉了呈现帧对帧相关性的残余亮度分量。

作为输入信号提供给高通行梳齿滤波器59的模拟量信号部分被描述成键控制号的二重编码;但是从高通行梳齿滤波器59来的输出信号部分地被描述成键控信号的三重编码,并被ADC65数字化以便向高通帧梳齿滤波器72提供输入信号。作为高通帧梳齿滤波器72输出信号提供的数字化信号仍然被描述为交替有效数据帧中的键控信号的三重编码,因为那些数据帧结合了两个数据帧,在这两个数据帧中相应地数字采样有相似的幅值及相反的极性。在是无效数据帧的交错数据帧中,作为高通帧梳齿滤波器72输出信号的数字化信号实质是5个层次,但是基于无效数据帧的符号决定是无关紧要的。从高通帧梳齿滤波器72接收数字响应作为其输入信号的符号决定电路具有三个各自定中在-1,0及+1上的比较区域。符号决定电路75包括一个绝对值电路751,它对来自高通帧梳齿滤波器72的输出信号产生校正数字响应。该绝对值电路751的校正数字响应被描述为键控信号的二重编码,并供给到阈值检测器752。

该阈值检测器是数字通信领域中公知的符号决定电路类型的,用于对于键控信号的二重编码作出符号决定。阈值检测器752从绝对值电路751接收符号流并作出符号是否最可能为“0”或最可能为“1”的决定。阈值检测器752通常包括设计来作为阈值检测器工作的数字比较器,利用阈值检测结果控制该决定,符号是否最可能是“1”或最可能为“0”取决于阈值的数字值是否被超过。阈值检测器752最好为这样的类型:其中用于阈值检测的阈值数字值可响应符号强度自动地调节。在该情况下,阈值检测器752与其电路相结合对由绝对值电路751提供的符号流的平均峰值电平进行检测,或是检测其平均电平,或是对两者进行检测。利用附设电路从检测到的每个电平中推算出数字值并提供给比较器,以便建立用于阈值检测的阈值。确定符号决定阈值的检测过程最好在垂直消隐间隔期间选择性地执行,这时,复合视频信号几乎不对由正交相位视频检测器47检测的信号提供能量。

来自符号决定电路75的符号流作为输出信号供给一位速缓冲器77,它由数据帧计数信号决定仅从那些交替帧中接收输入采样,在这些交替帧中,键控信号未被取消,但是不呈现帧对帧变化的亮度信号分量已被取消。数字采样信号以符号位速提供给位速缓冲器77,而从位速缓冲器77来的输出信号以二发之一符号位速供给到纠错解码器78。解码器78接收符号决定电路75的决定结果作为串位数字输入数据并纠正其错误,以便提供校正的串位数字数据,这些数据就是数字信号接收器41的输出数据,它与图1中所示的源13提供给电视发射机1的串位数字数据相对应。

在设计来与使用基于与水平扫描线横切的列而不是基于沿水平扫描线的行工作的修正Reed-Solomon码的发射机1一起应用的数字信号接收器41的优选实施例中,位速缓冲器77作为用于纠错解码器78的去隔行扫描器。用于位速缓冲器77的写地址发生器未表示在图8中。读地址发生器包括提供数据行计数的数据行计数器71及提供符号计数的符号计数器52,这些计数分别作为位速缓冲器77中RAM(S)的行及列寻址信号。

图8表示图7的数字信号接收机的改型79,它设计与使用图3中所示的部分响应滤波器165的发射机1一起使用。在这种数字信号接收机79中,高通行梳齿滤波器59后接有另一高通行梳齿滤波器60。这种高通行梳齿滤波器59及60的级联式连接比使用对加权求和网络提供输入信号的选择0,1H及2H延迟间隔的延迟线的等效电路较为更适合CCD结构,所述加权求和网络以(-0.25)∶0.5∶(-0.25)的比例加权,用于产生滤波器响应。

当发射机中的部分响应滤波器是图3所示的165类型或等效类型时,并当数字信号接收器包括图8所示或等效类型的二扫描行高通行梳齿滤波器时,高通帧梳齿滤波器72的数字响应基本是5个层次,实质上对于有效数据帧期间描述PSK信号来说并非是二重的。因此,在图8中用符号决定电路76取代图7中的符号决定电路75,其中电路75具有分别定中在-1,0及+1的三个比较器区域,而电路76具有分别定中在-2,-1,0,+1及+2五个比较器区域。符号决定电路76包括一个绝对值电路761,它对来自高通帧梳齿滤波器76的输出信号产生一个整流数字响应。该绝对值电路761的整流数字响应是描述为重叠一直流脉冲电压上的键控信号的三重编码,而非描述为键控信号的二重编码,因此该整流数字响应供给到一双阈值检测器762。该双阈值检测顺762接收来自绝对值电路761的符号流并作出符号是否最可能是“0”,最可能是“1”或最可能是“2”,“2”等效于“0”。双阈值检测器762通常包括二个数字比较器,每个设置成作为单阈值检测器工作,一个的数字阈值为另一个的二倍,及包括某些简单逻辑电路,用于依赖阈值检测结果决定符号的等同性。如果没有一个数字阈值被超过,逻辑电路指示符号最可能为“0”;如果仅是低数字阈值被超过,逻辑电路指示符号最可能为“1”;如果低的及高的数字阈值均被超过,逻辑电路指示符号最可能为“2”,它等效于“0”。该双阈值检测器762最好是在其中提供给比较器用于决定检测阈值的数字值可响应符号强度自动地调整的类型。在该情况下,双阈值检测器762附设了用以检测由绝对值电路761供给的符号流的平均电平、或平均峰值电平或这两种电平的电路。并有从每个检测电平中推算提供给数字比较器数字值的电路,用以确定它们各自用于阈值检测的阈值。用于决定符号确定阈值的检测程序最好在垂直消隐间隔期间选择性地执行,这时复合视频信号几乎不向由正交相位视频检测器47检测的信号提供能量。

符号决定电路75及76的每个作出“硬”决定,提供给检测器78二进制输入信号,用以执行数据通信工程师所称的“硬决定”正向纠错。符号决定电路75及76当然也可由将多电平的输入信号输入到一合适解码器的电路所取代,该电路也是执行数据通信工程师所称的“硬决定”正向纠错的。

图9详细地表示了高通行梳齿滤波器59可采用的一种形式590。滤波器590的一个输入端591与一差分输入放大器592的非反相输入连接线相连接,该放大器的输出连接线与滤波器590的输出端子593相连接。差分输入放大器592的反相输入连接线从一模拟量延迟线594的输出连接线接收其对多路调制器595输出信号的响应信号,该多路调制器595的输出信号提供给延迟线594的输入连接线。模拟量延迟线594提供等于一水平扫描行周期的延时。该“1H”延迟线通常构成电荷耦合器件(CCD)的移位寄存器,如果它实质上是模拟量的,差分输入放大器592通常包含在该CCD移位寄存器的电荷检测输出级中,即与CCD移位寄存器及其电荷注入输入电路一起构在一个单片集成电路(IC)中。多路调制器595适于构在与使用作为传输门工作的场效应晶体管同一IC中。

多路调制器595从解码器61接收控制信号,解码器61用“1”响应数据行计数器71在达到与数据帧中最后数据行有关的值时输出的数据行计数信号,并用“0”响应所有另外的数据行计数。为了对解码器61输出信号“1”作出响应,多路调制器595选择供给到输入端子591的检测到的BPSK信号,用以施加到1H延迟线594的输入连接线。

图10详细地表示高通行梳齿滤波器59可采用的另一种形式596,它是对图9中所示形式的变型,但不包括元件594及595。多路调制器597的输出连接线与图10中的差分输入放大器592的反相输入连接线相连接。多路调制器597接收来自解码器62的控制信号,后者用“1”响应被复位到与数据帧中起始数据行有关的值时的数据行计数器71的数据行计数信号,而用“0”响应所有另外的数据行计数值。为了响应解码器62的输出信号“1”,多路调制器597选择来自1H模拟量延迟线598的输出信号,用以将其施加到差分输入放大器592的非反相输入连接线。来自1H模拟量延迟线598的输出信号是对滤波器59的输入端子591供入信号的延迟响应,该延迟等于一水平扫描行的周期。

图11详细地表示高通行梳齿滤波器59及60的级联连接可采用的一种形式。高通行梳齿滤波器590是与图9中相同的;图11中的高通行梳状滤波器600具有元件601-605,它们与高通行梳齿滤波器590中的元件591-595相对应并在每个滤波器的范围内具有相似连接。

图12详细地表示高通行梳齿滤波器59及60的级联连接可采用的另一种形式。高通行梳齿滤波器596是和图10中相同的;图12中的高通行梳齿滤波器606具有元件607及608,它们与高通行梳齿滤波器596中的元件597及598相对应并在每个滤波器的范围中有相似的连接。

图13表示在图6中的位速缓冲器20可采用的一种形式,这时它用作从纠错编码器14接收修正Reed-Solomon编码的隔行扫描器。一个数据帧对计数器80从数据帧计数器23接收作为其计数输入(CI)信号的进位输出(CO)信号。该数据帧对计数器80对工作为纠错编码的隔行扫描器的两个存储数据帧的随机存取存储器81及82的交替写及读进行控制。在交替帧对间隔期间中以二分之一PSK速率将列及每列的符号的扫描地址从纠错编码器14写入到RAMs81及82中。在被写入的帧对间隔后的每个帧时间隔中以PSK速率将行及每行的符号的扫描地址从每个RAMs81及82读入到帧存储器21中。每行的“符号这里是指PSK符号或位,而不是指从编码观点考虑的与修正Reed-Solomon码相关的2N位符号。

地址多路调制器83从数据行计数器24接收数据行计数信号及从符号(即每行的符号)计数器25接收符号/行计数信号作为读寻址信号。该地址多路调制器83从数据列计数器84接收数据列计数信号及从每列符号计数器85接收符号/列计数信号作为写寻址信号。过零检测器32对一个触发器86以PSK速率提供触发脉冲,它作为一个分频器工作,用于将其输出信号的交替跃变值以二分之一PSK速率提供给每列符号计数器85作为其计数输入(CI)。解码器87对达到满计数(525,假定每列符号计数从0开始)的符号/列计数信号解码并将“1”作为计数输入(CI)信号提供给数据列计数器84。解码器87的输出信号作为第一输入信号提供给一个两输入的OR门88,该OR门88对解码器87来的“1”作出响应,并提供“1”作为复合(R)信号提供给每列符号计数器85,用于使符号/列计数复位到它的初始值。

供给OR门88的第二输入信号和供给数据列计数器84的复位(R)信号通过从一个三输入的AND门89来的输出响应信号来提供,它响应当输出是“1”电平时使符号/列计数和数据列计数复位到它们各自的起始值。当和仅仅当数据行计数指示数据帧的最后行被达到时,一个解码器260提供一逻辑“1”给AND门89的第一输入端、否则该解码器260提供一个逻辑“0”作为它的输出信号供给AND门89。(当部分响应滤波器160被用在发射机1中时解码器260能够是图6中的解码器27,因此,当和仅仅当数据行计数表示数据帧的最后行被达到时解码器27被设计来提供一个逻辑“1”)从数据行的最后符号解码器33来的输出信号和从数据帧计数器23来的模-2数据帧计数供给AND门89,作为它的三个输入信号的另外两个输入信号。正好在偶数帧被达到之前当选择的RAMs81和82中的一个被一个数据行接一个数据行地读到帧存储器21中时,仅仅当在奇数帧中最后数据行的最后符号被达到时,AND门89的输出响应是一个“1”。

从数据帧对计数器80来的模-2数据帧对计数是一个“1”就决定了地址多路调制器83来选择读寻址到RAM81和选择写寻址到RAM82。从数据帧对计数器80来的模-2数据帧对计数是一个“1”状态使RAM81一个数据行接一个数据行地被读到帧存储器21,并且该计数的二进制反码是一个“0”状态能够使RAM82由纠错编码器14一个数据列接一个数据列地被写入。

从数据帧对计数器80来的模-2数据帧对计数是一个“0”就决定了地址多路调制器83来选择读寻址到RAM82和选择写寻址到RAM81。从数据帧对计数器80来的模-2数据帧对计数是一个“0”能使RAM82一个数据行接一个数据行地被读到帧存储器21中,并且该计数的二进制反码是“1”能使RAM81由纠错编码器14一个数据列接一个数据列地被写入。

图14示出了采用图7或8中所示的位速缓冲器77的一种形式、即当它被用作为一个去隔行扫描器用于由符号决定电路75或76完成的修正的Reed-Solomon编码时能够采用位速缓冲器77的一种形式。一个数据帧对计数器90接收一个由数据帧计数器70来的进位输出(C0)信号作为它的计数输入(C1)信号。数据帧对计数器90控制两个帧存储随机存取存储器91和92的交替的写和读,所述随机存取存储器91和92操作为用于纠错编码的去隔行扫描器。仅仅在交替的偶数帧期间RAM91和92被写入,用于写入RAM91和92中的数据由符号决定电路75或76以PSK速率提供,通过行和通过每行的符号进行地址扫描。在此涉及的每行“符号”是PSK符号或位而不是与从一个编码的观点来考虑的修正Reed-Solomon码有关的2N位符号。在交替的帧对间隔期间以二分之一PSK速率由列和每列的符号进行地址扫描把RAM91和92的每一个读到帧存储器21中。

地址多路调制器93从数据行计数器71接收数据行计数和以符号(即每行符号)计数器52接收符号/行计数作为写寻址。地址多路调制器93从数据列计数器94接收数据列计数和以每列符号计数器95接收符号/列计数作为读寻址。过零检测器53以PSK速率为一个被触发的触发器96提供触发脉冲,该触发器96起到一个分频器的作用,以二分之一的PSK速率为每列符号计数器95提供其交替变换的输出信号作为计数输入(C1)。解码器97将达到满计数(525,假设每列的符号计数从零开始)的符号/列计数解码以便提供一个“1”作为用于数据列计数器94的计数输出(C1)信号。解码器97输出信号被提供给两输入的OR门98作为其第一个输入信号,OR门98响应从解码器97来的“1”信号以便提供一个作为复位(R)信号的“1”信号给每列符号计数器95,用于把符号/列计数复位到它的起始值。

用三输入的AND门99的输出响应来作为第二个输入信号提供给OR门98和作为复位(R)信号提供给数据列计数器94,它根据当AND门99的输出是“1”时使符号/列计数和数据列计数复位到它们各自的起始值。当和仅仅当数据行计数指示数据帧的最后的行被达到时解码器61为AND门99的第一个输入提供一个逻辑“1”,否则解码器61为AND门99提供一个逻辑“0”作为它的输出信号。由数据行的最后符号解码器55来的输出信号和由数据帧计数器70来的模-2数据帧计数被提供给AND门99作为它的三个输入信号的另外两个输入信号。正好在偶数帧被达到之前当RAM91和92中被选择的一个由符号决定电路75或76一个数据行接一个数据行地写入时,仅仅当在奇数帧中最后数据行的最后符号被达到时AND门99的输出响应是一个“1”。

从数据帧对计数器90来的模-2数据帧对计数是一个“1”就决定了地址多路调制器93来选择读寻址到RAM91和选择写寻址到RAM92。从数据帧对计数器90来的数据帧对计数是一个“1”能使RAM91一个数据列接一个数据列地被读到纠错解码器78中。对应于由计数器70和90来的数据帧计数和数据帧对计数的二进制补码都是“零”,两输入的AND门101有选择地提供一个“1”作为写启动(WE)信号到RAM92中。这个WE信号能使RAM92由符号决定电路75或76一个数据行接一个数据行地被写入。

从数据帧对计数器90来的模-2数据帧对计数是一个“0”就决定地址多路调制器93选择写寻址到RAM92和选择写寻址到RAM91。从数据帧对计数器90来的数据帧对计数是一个“0”能使RAM92一个数据列接一个数据列地读到纠错解码器78中。对应于从计数器70来的数据帧计数的二进制补码是“0”和从计数器90来的数据帧对计数是“1”,两输入的AND门102有选择地提供一个“1”作为写启动(WE)信号到RAM92中。这个WE信号能使RAM92由符号决定电路75或76一个数据行接一个数据行地被写入。

当由成对的帧的帧梳齿滤波所产生的无效信号的交替帧被除去时,为了填满所留下的间隙在数字信号接收器41中所做的位速缓冲能够在帧梳齿滤波之后发生,但在符号决定电路之前。然而由于帧存储器仅需要的是一个位深,而不是许多个位深,所以位速缓冲最好在符号决定之后被进行。最好在纠错解码之前与去隔行扫描一起来进行位速缓冲,因为它可以避免为了位速缓冲需要一个单独的帧存储器。当位速缓冲与去隔行扫描分离地被进行时,位速缓冲能够仅用一个帧存储器来进行,如果它是一个具有一个由移位寄存器提供的只读器的双口RAM,该寄存器的串联级能在从RAM部分经由一个读/写口存取数的时间并行地被加载一行。

在该说明书中描述的数据传输系统提供了一个简单、合理地宽频带数据传输信道。借助于这种利用各种型式的时间分割多路复用系统能够提供各种各样的服务。例如,能够在具有每个连续组的组中传输数据,每个组设置有用于指示被提供的数据服务的特征和数据服务的发生源的标题信息。电视广播员和有线广播员能是各种数据服务的发生源。在双向数据传输系统中,在识别发生源的组上加标题能够被用来选择合适的数据返回信道,例如一个电话线路或一个在有线广播系统中专用的信道。

目前已经描述了由发明人优选的本发明的实施例,但是在通信系统、发射机和接收机设计领域里的技术人员根据上述公开的内容能够设计许多本发明的替换实施例,并且当分析说明书后面的权利要求的保护范围时将考虑这些替换实施例。

在图1所示的发射机1的一个变型中,提供了一种变型的发射机,在某些方面来讲这种变型的发射机不是本发明优选的实施例,由帧配对电路15来的输出信号直接地供给DAC17,而不是由部分响应滤波16来滤波。这样变型的发射机可以与图7中所示变型的数字信号接收器41一起来使用,在某些方面来说变型的数字信号接收器41不是本发明优选的实施例。图7所示数字信号接收器41被变型是为了省去高通行梳齿滤波器59,匹配滤波器的响应直接供给ADC65,并且是为了省去绝对值电路75和符号决定电路76,高通帧梳齿滤波器72响应的符号位直接地供给位速缓冲器77。

在某些方面,在实施本发明的其它数字信号接收机中的行梳齿和帧梳齿滤波器作为例子在模拟量状态中能够被完全地实现,或者作为进一步的例子,在数字量状态中能够被完全地实现,和它们在级联中的连接顺序能够被变换。Thomas    Vincent    Bolger,本发明人的一个合作者,已经建议在被级联的行梳齿和帧梳齿滤波器在数字量状态中被完全地实现之前利用一个重复取样模数转换器。

在图2、3、4和5中所示的部分响应滤波的进行是假设:在数字信号接收机中将进行高通梳齿滤波,该滤波根据一个在另一个上取样的行与行的相关性来排斥复合视频信号。部分响应滤波能够被作出是假设:根据并列取样的相关性来排斥复合视频信号的接收机高通梳齿滤波将被进行。附加的部分响应滤波不希望有地增加了包括在符号判定中比较器排列的数量,然而它趋于减小符号判定的精确度和增加位误差的可能性。在正交相位视频检测器响应中复合视频信号的并列取样的相关性实际上已经被减小,因为该检测器对于低于750KHz的亮度频率不敏感并且已经减小了对从0.75至1.25KHz的亮度频率的敏感。因此,由于作为一个干扰信号的亮度信号被减小而使位误差被减小的概率通过由于包括在符号判定中的大量比较器的排列而使位误差被增加的概率来抵消了。附加的部分响应滤波也能够被进行,即假设:根据对角相互位移的取样的相关性将进行排斥复合视频信号的接收机高通梳齿滤波。

发明人指出:在美国专利申请号08/108,311中描述的数据传输系统能够被变型来包括部分响应滤波,以致于数据和复合视频信号能够更好地相互分开,利用高通行梳齿滤波以使把数据与亮度信号分开和利用低通线梳齿滤波以使把数据与彩色信号分开。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号