首页> 中国专利> 金-有机硅-金的多层核壳纳米结构及其制备方法和应用

金-有机硅-金的多层核壳纳米结构及其制备方法和应用

摘要

本发明提供一种金-有机硅-金的多层核壳纳米结构及其制备方法和应用。该多层核壳纳米结构包括:由金纳米颗粒构成的内核;由有机硅构成且包围内核的中间介电层;以及由金纳米材料构成且包围中间介电层的外壳。其制备方法包括:a:利用氯化金和柠檬酸三钠制备分散有金纳米颗粒的胶体溶液;b:加入氨水和巯基硅烷,形成由有机硅构成的表面巯基功能化的中间介电层;c:加入氯化金和还原剂,利用原位还原种子生长法形成由金纳米材料构成的外壳。该制备方法简单高效,重复性好。该多层核壳纳米结构具有单一的形貌、良好的单分散性,在近红外激光照射下具有与普通单层金纳米壳相比更好的光热效果;可作为表面增强拉曼散射基底材料用于拉曼生物成像。

著录项

  • 公开/公告号CN104162665A

    专利类型发明专利

  • 公开/公告日2014-11-26

    原文格式PDF

  • 申请/专利权人 华东理工大学;

    申请/专利号CN201410437663.X

  • 发明设计人 李永生;高勇平;王尧;施剑林;

    申请日2014-08-29

  • 分类号B22F1/02(20060101);B82Y30/00(20110101);B22F9/24(20060101);B82Y40/00(20110101);G01N21/65(20060101);

  • 代理机构31002 上海智信专利代理有限公司;

  • 代理人邓琪

  • 地址 200237 上海市徐汇区梅陇路130号

  • 入库时间 2023-12-17 01:10:06

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-01-11

    授权

    授权

  • 2014-12-24

    实质审查的生效 IPC(主分类):B22F1/02 申请日:20140829

    实质审查的生效

  • 2014-11-26

    公开

    公开

说明书

技术领域

本发明涉及纳米与生物材料领域,更具体地涉及一种金-有机硅-金的多 层核壳纳米结构及其制备方法和应用。

背景技术

近年来,金纳米壳由于其可调的等离子光学性质及广阔的生物医学应用 和光学应用前景正受到越来越广泛的关注。金纳米壳能产生可调的等离子基 元共振,从而引起强烈的光学吸收和散射。通过调节核与壳的相对大小(即 核壳比),其消光峰可跨越可见光到近红外区(650-1300nm)。为了能更为精 细的调节等离子共振特性,一种特殊的金-二氧化硅-金的多层核壳纳米结构 被人们提及。理论上,与普通单层金纳米壳相比,多层核壳纳米结构具有更 为复杂优异的光学性质。首先,内核颗粒与外层金壳会发生等离子作用,这 使得多层核壳纳米结构出现更多的等离子共振峰。此外,通过调节多层核壳 纳米结构的中间介电层厚度,多层核壳纳米结构的吸收和散射相对强弱可被 调节,这使得多层核壳纳米结构在生物成像和治疗方面应用潜力巨大。而且, 多层核壳结构多层核壳纳米结构还能支持“Fano”共振。“Fano”共振在检测 灵敏度方面或者较大的突破,因此,多层核壳纳米结构作为下一代生物感应 试剂具有较大的优势。近场分布计算表明,多层核壳纳米结构的内核金颗粒 表面具有较好的近场增强。这个结果预示着多层核壳纳米结构作为表面增强 拉曼散射(SERS)基板,在环境监测和基础生物医学研究领域有着广阔的应 用潜力。

虽然多层核壳纳米结构具有非常优异的光学性质,但是迄今为止,有关 多层核壳纳米结构的可控制备报道极少。有限的报道显示,多层核壳纳米结 构的中间介电层均是采用二氧化硅构成(R.Bardhan,S.Mukherjee,N.A. Mirin,S.D.Levit,P.Nordlander,N.J.Halas,J.Phys.Chem.C2010,114,7378; X.H.Xia,Y.Liu,V.Backman,G.A.Ameer,Nanotechnology2006,17,5435;C. S.Bell,S.S.Yu,T.D.Giorgio,Small2011,7,1158;C.Ayala-Orozco,J.G.Liu, M.W.Knight,Y.Wang,J.K.Day,P.Nordlander,N.J.Halas,Nano Lett.2014,14, 2926)。其大致的制备过程是:首先,制备一定粒径的金纳米颗粒,经离心、 超声再分散置换为乙醇相;然后加入氨水和正硅酸乙酯(TEOS)形成Au-SiO2醇溶胶,经离心、超声再分散并重复三次以除杂质;清洗好的Au-SiO2醇溶 胶与氨丙基三乙氧基硅烷(APTES)混合,通过APTES修饰Au-SiO2颗粒使 其表面氨基化;接着,用硼氢化钠还原法制备1-3nm的胶体金溶液作为后续 实验的种子;然后,金纳米颗粒种子通过静电作用吸附到SiO2颗粒表面;最 后,在甲醛或CO2等弱还原剂的作用下,更多的金被还原,并以胶体表面的 金纳米颗粒种子作为晶核在表面形成最外层金壳。但是这种种子生长法步骤 多、复杂,金纳米颗粒种子嫁接效果欠佳。总结起来,其制备存在以下三方 面的问题:

(1)该方法需要频繁的相转移(水-醇)及离心清洗,非常耗时耗力。

(2)载体表面需要复杂的氨基功能化修饰,这种修饰容易导致材料的团 聚,影响材料的分散性。

(3)金纳米颗粒种子通过-NH2与种子的静电作用吸附到载体表面,这 种经典吸附不牢固,种子容易脱落,影响后续壳层的生长。

发明内容

本发明提供一种金-有机硅-金的多层核壳纳米结构及其制备方法和应 用,从而解决现有技术中多层核壳纳米结构的制备工艺复杂、制备效果欠佳、 性能不稳定等问题。

为解决上述问题,本发明采用的技术方案为:

一种金-有机硅-金的多层核壳纳米结构,包括:由金纳米颗粒构成的内 核;由有机硅构成且包围所述内核的中间介电层;以及由金纳米材料构成且 包围所述中间介电层的外壳。

所述金-有机硅-金的多层核壳纳米结构具有60-250nm的整体直径,其 中,所述内核的直径为10-100nm,所述中间介电层的厚度为10-50nm,所 述外壳的厚度为15-25nm。

所述金-有机硅-金的多层核壳纳米结构具有呈现双峰的紫外-可见-近红 外消光谱,其中一个峰处于700-900nm范围的近红外区域,另一个峰处于 550-650nm范围的可见光区域。

本发明还提供一种金-有机硅-金的多层核壳纳米结构的制备方法,包括:

步骤a:利用氯化金和柠檬酸三钠制备分散有金纳米颗粒的胶体溶液;

步骤b:向步骤a得到的胶体溶液中加入氨水和巯基硅烷,在所述金纳 米颗粒表面形成由有机硅构成的表面巯基功能化的中间介电层;

步骤c:向步骤b得到的胶体溶液中加入氯化金和还原剂,利用原位还 原种子生长法在所述中间介电层表面形成由金纳米材料构成的外壳。

其中,所述步骤a包括:

步骤a1:将氯化金和柠檬酸三钠按照摩尔比(15-50):(250-400)混合 均匀,加入超纯水,在100℃沸腾条件下得到鲜红色胶体溶液,然后降温至 70-90℃;

步骤a2:将氯化金和柠檬酸三钠按照摩尔比(20-40):(50-200)同时加 入到所述鲜红色胶体溶液中,在70-90℃下继续搅拌得到分散有金纳米颗粒 的暗红色胶体溶液。

其中,所述步骤b中,所述金纳米颗粒、氨水和有机硅烷的摩尔比为 (1-10):(100-300):(5-20)。

其中,所述步骤b中,所述巯基硅烷为3-巯基丙基三甲氧基硅烷、3-巯 基丙基三乙氧基硅烷或3-巯基丙基三丙氧基硅烷。

其中,所述步骤c包括:

c1:向步骤b得到的胶体溶液中依次加入摩尔比为6×104:1.5:1的超 纯水、氯化金和第一还原剂,在所述中间介电层表面形成金纳米颗粒;

c2:向步骤c1得到的胶体溶液中依次加入摩尔比为2×104:1.5:0.01: 30的超纯水、氯化金、碳酸钾和第二还原剂,以使所述中间介电层表面的金 纳米颗粒继续生长形成由金纳米材料构成的外壳。

其中,所述第一还原剂优选为硼氢化钠,所述第二还原剂优选为抗坏血 酸,应该理解,其它任何能够将氯化金还原为金的还原剂均可用在本发明中。

本发明还提供所述金-有机硅-金的多层核壳纳米结构在表面增强拉曼散 射上的应用。

所述金-有机硅-金的多层核壳纳米结构在808nm激光照射下,同等消光 强度(强度为2)条件下,与单层金纳米壳相比具有更好的光热转化效果。 所述多层核壳纳米结构浓度为50μg/ml具有明显的光热杀死癌细胞能力。

所述金-有机硅-金的多层核壳纳米结构作为表面增强拉曼光谱(SERS) 基板,同等内核金颗粒浓度条件下,多层核壳纳米结构具有比不带有最外层 金壳的金-有机硅纳米颗粒强近10倍的拉曼增强效果。

通过上述技术手段,本发明的金-有机硅-金的多层核壳纳米结构及其制 备方法和应用的优点包括:

(1)该多层核壳纳米结构的制备合成过程简单高效,重复性好。整个合 成过程均在水相体系进行,不需要频繁的相转移和清洗过程,省时省力;中 间介电层采用巯基硅烷作为单一硅烷直接自缩聚形成,形成的中间介电层表 面已经是巯基(-SH)功能化的,避免了繁琐且效果不佳的功能化修饰;金 纳米颗粒种子通过原位还原的方法直接一步嫁接到中间介电层表面,种子与 载体通过化学键Au-S键结合,比传统的静电吸附效果更好,不易脱落。

(2)该多层核壳纳米结构具有极佳的分散性,且形貌粒径均一,多层核 壳结构清晰可辨,是理论计算的理想实验模型。

(3)该多层核壳纳米结构的各层厚度参数均可通过调节反应物加入量很 方便地进行调节,等离子共振特性也因此能得到较大范围内自由调节。

(4)该多层核壳纳米结构具有优良的光热疗能力,同时可用于SERS基 板,有望在生物医药领域,特别是癌症的诊断与治疗方面发挥纳米药物的优 势。

附图说明

图1是本发明的金-有机硅-金的多层核壳纳米结构的制备工艺流程图;

图2是根据本发明一个实施例制备的金-有机硅-金的多层核壳纳米结构 的扫描透射电镜照片,其中,(a)为扫描照片,(b)为透射电镜明场模式照 片;

图3是根据本发明一个实施例制备的金-有机硅-金的多层核壳纳米结构 的透射电镜照片,其中,(a)为4000倍,(b)为60000倍;

图4是根据本发明一个实施例制备的金-有机硅-金的多层核壳纳米结构 的紫外-可见-近红外消光光谱图;

图5是在相同消光度条件下,超纯水、单层金纳米壳与根据本发明一个 实施例制备的金-有机硅-金的多层核壳纳米结构经808nm激光照射后的温度 变化图;

图6是根据本发明一个实施例制备的金-有机硅-金的多层核壳纳米结构 在808nm激光照射和无激光照射条件下对癌细胞的毒性表征;

图7是根据本发明一个实施例制备的金-有机硅-金的多层核壳纳米结构 与不带有最外层金壳的金-有机硅纳米颗粒作为表面增强拉曼光谱(SERS) 基板时,拉曼信号增强效果对比图;

图8为根据本发明另一实施例制备的金-有机硅-金的多层核壳纳米结构 的透射电镜照片,其中,(a)为4000倍,(b)为60000倍;

图9为根据本发明又一实施例制备的金-有机硅-金的多层核壳纳米结构 的透射电镜照片,其中,(a)为4000倍,(b)为60000倍。

具体实施方式

以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅 用于说明本发明而非用于限制本发明的范围。

实施例1

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为25:300混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至85℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为30:75加入 到上述溶液中,在85℃条件下搅拌半小时后离心得到70ml分散有金纳米 颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 2:300:15直接加入0.2mg氨水和0.03mg3-巯基丙基三乙氧基硅烷(MPTES) 振荡90s后静置12h,以便在所述金纳米颗粒表面形成一层由有机硅构成的 表面巯基功能化的中间介电层,从而得到表面巯基功能化的金-有机硅纳米颗 粒。

在上述得到的胶体溶液中,按摩尔比6×104:1.5:1依次加入75ml超纯 水、3ml,0.01M的氯化金(HAuCl4)与2ml,0.01M的硼氢化钠(NaBH4), 混合后继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒, 然后离心浓缩为2ml左右。将这2ml胶体溶液加入300ml超纯水中,然后 按摩尔比为1.5:0.01:30加入11ml,0.01M的氯化金(HAuCl4)、73mg碳酸钾 (K2CO3)和5.5ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米颗粒 种子继续生长形成由金纳米材料构成的外壳,然后离心得到金-有机硅-金的 多层核壳纳米结构。

将根据本实施例制得的多层核壳纳米结构分别进行扫描电镜与透射电镜 表征,其形貌特征和结构如图2(a)—图3(b)所示。如图可知,该多层核 壳纳米结构的整体直径为150nm左右,其中,内核的直径为50nm左右, 中间介电层的厚度为30nm左右,外壳的厚度为20nm左右。

将该多层核壳纳米结构的胶体溶液进行紫外-可见-近红外光谱表征,结 果如图4所示。结果显示,多层核壳纳米结构出现两个等离子峰,分别位于 790nm和590nm。

进一步对该多层核壳纳米结构进行光热转换表征,定量消光度为2.0浓 度的多层核壳纳米结构胶体溶液,将其置于808nm激光照射下,用热电偶 实时测量其温度变化,结果如图5所示。由图5可知,15min照射后,多层 核壳纳米结构溶液的温度上升到55℃左右,而单层金纳米壳的温度只上升 到50℃左右,纯水没有明显的温度变化。同时将多层核壳纳米结构与乳腺癌 细胞共同孵育后,在808nm激光照射下具有明显的杀伤癌细胞的功能,证 实了显著的光热疗效果(图6)。另外,金纳米壳本身对癌细胞没有毒性。

基本配方不变,只在加入氨水和3-巯基丙基三乙氧基硅烷(MPTES)前 加入2ml,0.01mM巯基苯甲酸(MBA)作为拉曼报告分子,得到MBA标 记的多层核壳纳米结构。对其进行拉曼光谱表征,结果如图7所示。由图7 可知,多层核壳纳米结构具有明显的增强MBA拉曼信号的能力。而且对比 不带有最外层金壳的金-有机硅纳米颗粒,该多层核壳纳米结构提供了近10 倍的拉曼信号增强效果,证明了制得的多层核壳纳米结构是一类良好的 SERS基体材料。

实施例2

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为25:250混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至70℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为20:100加 入到上述溶液中,在70℃条件下搅拌半小时后离心得到70ml分散有金纳 米颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 1:300:20直接加入0.2mg氨水和0.04mg3-巯基丙基三乙氧基硅烷(MPTES) 振荡90s后静置12h,以便在所述金纳米颗粒表面形成一层由有机硅构成的 表面巯基功能化的中间介电层,从而得到表面巯基功能化的金-有机硅纳米颗 粒。

在上述胶体溶液中,按摩尔比6×104:1.5:1依次加入75ml超纯水、3ml, 0.01M的氯化金(HAuCl4)与2ml,0.01M的硼氢化钠(NaBH4),混合后 继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒,然后离 心浓缩为2ml左右。将这2ml胶体溶液加入300ml超纯水中,然后按摩尔 比为1.5:0.01:30加入11ml,0.01M的氯化金(HAuCl4)、73mg碳酸钾(K2CO3) 和5.5ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米颗粒种子继续生 长形成由金纳米材料构成的外壳,然后离心得到金-有机硅-金的多层核壳纳 米结构。

将根据本实施例制得的多层核壳纳米结构进行透射电镜表征,结果如图 8所示。由图可知,该多层核壳纳米结构的整体直径为150nm左右其中,内 核的直径为30nm左右,中间介电层的厚度为40nm左右,外壳的厚度为20 nm左右。

将该多层核壳纳米结构的胶体溶液进行紫外-可见-近红外光谱表征,结 果显示,多层核壳纳米结构出现两个等离子峰,分别位于750nm和550nm。

实施例3

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为30:250混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至90℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为40:100加 入到上述溶液中,在90℃条件下搅拌半小时后离心得到70ml分散有金纳 米颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 6:300:9直接加入0.2mg氨水和0.018mg3-巯基丙基三乙氧基硅烷(MPTES) 振荡90s后静置12h,以便在所述金纳米颗粒表面形成一层由有机硅构成的 表面巯基功能化的中间介电层,从而得到表面巯基功能化的金-有机硅纳米颗 粒。

在上述胶体溶液中,按摩尔比6×104:1.5:1依次加入75ml超纯水、3ml, 0.01M的氯化金(HAuCl4)与2ml,0.01M的硼氢化钠(NaBH4),混合后 继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒,然后离 心浓缩为2ml左右。将这2ml胶体溶液加入300ml超纯水中,然后按摩尔 比为1.5:0.01:30加入11ml,0.01M的氯化金(HAuCl4)、73mg碳酸钾(K2CO3) 和5.5ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米颗粒种子继续生 长形成由金纳米材料构成的外壳,然后离心得到金-有机硅-金的多层核壳纳 米结构。

将根据本实施例制得的多层核壳纳米结构进行透射电镜表征,结果如图 9所示。由图可知,该多层核壳纳米结构的整体直径为150nm左右,其中, 内核的直径为70nm左右,中间介电层的厚度为20nm左右,外壳的厚度为 20nm左右。

将该多层核壳纳米结构的胶体溶液进行紫外-可见-近红外光谱表征,结 果显示,多层核壳纳米结构出现两个等离子峰,分别位于820nm和620nm。

实施例4

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为25:300混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至85℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为30:75加入 到上述溶液中,在85℃条件下搅拌半小时后离心得到70ml分散有金纳米 颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 2:100:12直接加入在上述得到的胶体溶液中,直接加入0.05mg氨水和0.025 mg3-巯基丙基三甲氧基硅烷(MPTMS)振荡90s后静置6h,以便在所述金 纳米颗粒表面形成一层由有机硅构成的表面巯基功能化的中间介电层,从而 得到表面巯基功能化的金-有机硅纳米颗粒。

在上述胶体溶液中,按摩尔比6×104:1.5:1依次加入75ml超纯水、3ml, 0.01M的氯化金(HAuCl4)与2ml,0.01M的硼氢化钠(NaBH4),混合后 继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒,然后离 心浓缩为2ml左右。将这2ml胶体溶液加入300ml超纯水中,然后按摩尔 比为1.5:0.01:30加入11ml,0.01M的氯化金(HAuCl4)、73mg碳酸钾(K2CO3) 和5.5ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米颗粒种子继续生 长形成由金纳米材料构成的外壳,然后离心得到金-有机硅-金的多层核壳纳 米结构。

将根据本实施例制得的多层核壳纳米结构进行透射电镜表征,结果显示, 该多层核壳纳米结构的整体直径为150nm左右,其中,内核的直径为50nm 左右,中间介电层的厚度为30nm左右,外壳的厚度为20nm左右。

实施例5

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为25:300混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至85℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为30:75加入 到上述溶液中,在85℃条件下搅拌半小时后离心得到70ml分散有金纳米 颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 2:300:20直接加入在上述得到的胶体溶液中,直接加入0.2mg氨水和0.04mg 3-巯基丙基三丙氧基硅烷(MPTPS)振荡90s后静置24h后得到巯基功能化 的金-有机硅纳米颗粒。

在上述胶体溶液中,按摩尔比6×104:1.5:1依次加入75ml超纯水、3ml, 0.01M的氯化金(HAuCl4)与2ml,0.01M的硼氢化钠(NaBH4),混合后 继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒,然后离 心浓缩为2ml左右。将这2ml胶体溶液加入300ml超纯水中,然后按摩尔 比为1.5:0.01:30加入11ml,0.01M的氯化金(HAuCl4)、73mg碳酸钾(K2CO3) 和5.5ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米颗粒种子继续生 长形成由金纳米材料构成的外壳,然后离心得到金-有机硅-金的多层核壳纳 米结构。

将根据本实施例制得的多层核壳纳米结构进行透射电镜表征,结果显示, 该多层核壳纳米结构的整体直径为150nm左右,其中,内核的直径为50nm 左右,中间介电层的厚度为30nm左右,外壳的厚度为20nm左右。

实施例6

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为50:250混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至90℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为40:50加入 到上述溶液中,在90℃条件下搅拌半小时后离心得到70ml分散有金纳米 颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 10:300:20直接加入在上述得到的胶体溶液中,直接加入0.2mg氨水和0.04 mg3-巯基丙基三乙氧基硅烷(MPTES)振荡90s后静置24h后得到巯基功 能化的金-有机硅纳米颗粒。

在上述胶体溶液中,按摩尔比6×104:1.5:1依次加入112ml超纯水、 4.5ml,0.01M的氯化金(HAuCl4)与3ml,0.01M的硼氢化钠(NaBH4), 混合后继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒, 然后离心浓缩为2ml左右。将这2ml胶体溶液加入450ml超纯水中,然后 按摩尔比为1.5:0.01:30加入17.6ml,0.01M的氯化金(HAuCl4)、117mg碳 酸钾(K2CO3)和8.8ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米 颗粒种子继续生长形成由金纳米材料构成的外壳,然后离心得到金-有机硅- 金的多层核壳纳米结构。

将根据本实施例制得的多层核壳纳米结构进行透射电镜表征,结果显示, 该多层核壳纳米结构的整体直径为250nm左右,其中,内核的直径为100nm 左右,中间介电层的厚度为50nm左右,外壳的厚度为25nm左右。将该多 层核壳纳米结构的胶体溶液进行紫外-可见-近红外光谱表征,结果显示,多 层核壳纳米结构出现两个等离子峰,分别位于900nm和650nm。

实施例7

在室温条件下,将氯化金与柠檬酸三钠按照摩尔比为15:400混合,加入 72ml超纯水混合均匀得到鲜红色胶体溶液,加热该溶液至沸腾保持15min 后降温至70℃左右。继续将氯化金与柠檬酸三钠按照摩尔比为20:200加 入到上述溶液中,在70℃条件下搅拌半小时后离心得到70ml分散有金纳 米颗粒的暗红色胶体溶液。

在取上述胶体溶液16ml,按金纳米颗粒、氨水和巯基硅烷摩尔比为 1:100:5直接加入在上述得到的胶体溶液中,直接加入0.05mg氨水和0.01mg 3-巯基丙基三乙氧基硅烷(MPTES)振荡90s后静置24h后得到巯基功能化 的金-有机硅纳米颗粒。

在上述胶体溶液中,按摩尔比6×104:1.5:1依次加入75ml超纯水、3ml, 0.01M的氯化金(HAuCl4)与2ml,0.01M的硼氢化钠(NaBH4),混合后 继续搅拌2h,以便所述中间介电层表面形成作为种子的金纳米颗粒,然后离 心浓缩为2ml左右。将这2ml胶体溶液加入150ml超纯水中,然后按摩尔 比为1.5:0.01:30加入5.5ml,0.01M的氯化金(HAuCl4)、36.5mg碳酸钾 (K2CO3)和2.75ml,0.4M抗坏血酸,快速搅拌3min,以使所述金纳米颗 粒种子继续生长形成由金纳米材料构成的外壳,然后离心得到金-有机硅-金 的多层核壳纳米结构。

将根据本实施例制得的多层核壳纳米结构进行透射电镜表征,结果显示, 该多层核壳纳米结构的整体直径为60nm左右,其中,内核的直径为10nm 左右,中间介电层的厚度为10nm左右,外壳的厚度为15nm左右。将该多 层核壳纳米结构的胶体溶液进行紫外-可见-近红外光谱表征,结果显示,多 层核壳纳米结构出现两个等离子峰,分别位于700nm和550nm。

综上所述,本发明的金-有机硅-金的多层核壳纳米结构及其制备方法和 应用的优点包括:

(1)该多层核壳纳米结构的制备合成过程简单高效,重复性好。整个合 成过程均在水相体系进行,不需要频繁的相转移和清洗过程,省时省力;中 间介电层采用巯基硅烷作为单一硅烷直接自缩聚形成,形成的中间介电层表 面已经是-SH功能化的,避免了繁琐且效果不佳的功能化修饰;金纳米颗粒 种子通过原位还原的方法直接一步嫁接到中间介电层表面,种子与载体通过 化学键Au-S键结合,比传统的静电吸附效果更好,不易脱落。

(2)该多层核壳纳米结构具有极佳的分散性,且形貌粒径均一,多层核 壳结构清晰可辨,是理论计算的理想实验模型。

(3)该多层核壳纳米结构的各层厚度参数均可通过调节反应物加入量很 方便地进行调节,等离子共振特性也因此能得到较大范围内自由调节。

(4)该多层核壳纳米结构具有优良的光热疗能力,同时可用于SERS基 板,有望在生物医药领域,特别是癌症的诊断与治疗方面发挥纳米药物的优 势。

以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围, 本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要 求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利 要求保护范围。本发明未详尽描述的均为常规技术内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号