首页> 中国专利> 闭合绕组永磁无刷直流电机优化设计方法

闭合绕组永磁无刷直流电机优化设计方法

摘要

本发明涉及一种基于差分进化算法和有限元时步法的闭合绕组永磁无刷直流电机优化设计方法。根据闭合绕组永磁无刷直流电机的特殊性,同时考虑电机的本体与控制部分,将系统的转矩密度和单位转矩的成本作为优化目标;并且将并联支路环流、功率因数、效率、转矩输出和波动、发热、结构强度等作为约束条件。对每一代设计方案通过变异、交叉和选择操作,进行差分进化,不断更新Pareto最优解集;同时为了保证设计的精确性,利用有限元时步法对闭合绕组永磁无刷直流电机进行精确动态仿真计算。本发明为闭合绕组永磁无刷直流电机的设计优化,提供了一种可靠且精确的方法,加快了该种新电机的开发。

著录项

  • 公开/公告号CN103678783A

    专利类型发明专利

  • 公开/公告日2014-03-26

    原文格式PDF

  • 申请/专利权人 上海交通大学;

    申请/专利号CN201310612726.6

  • 发明设计人 朱莉;李小海;姜淑忠;郭灿新;

    申请日2013-11-26

  • 分类号G06F17/50(20060101);G06N3/12(20060101);

  • 代理机构31236 上海汉声知识产权代理有限公司;

  • 代理人郭国中

  • 地址 200240 上海市闵行区东川路800号

  • 入库时间 2023-12-17 01:05:13

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-07-26

    专利权的转移 IPC(主分类):G06F17/50 登记生效日:20190708 变更前: 变更后: 申请日:20131126

    专利申请权、专利权的转移

  • 2016-08-17

    授权

    授权

  • 2014-04-23

    实质审查的生效 IPC(主分类):G06F17/50 申请日:20131126

    实质审查的生效

  • 2014-03-26

    公开

    公开

说明书

技术领域

本发明涉及电机设计优化领域,特别是针对闭合绕组永磁无刷直流电机,涉及约束条件下精确的电机多目标智能优化设计方法。

背景技术

电机优化设计时需要综合考虑电机的性能、体积、成本等目标,而这些优化目标之间往往是相互冲突的;此外,在优化过程中,必须考虑实际生产难度和应用条件。由于电机的高度非线性和各参数间的强耦合,电机的计算方法会直接影响到计算结果的准确性,从而影响最终的优化结果。因此,优化方法和计算方法是电机优化设计中的关键。

传统的优化方法基于变量可微,通过建立数学模型求得最优解。虽然传统优化方法容易理解,求解过程也相对比较简单,但是其受到了变量可微、模型精确度的限制,对初始解的依赖性高,而且易于过早局部收敛,往往不能处理多优化目标冲突、约束条件复杂、非线性度高、参数耦合性高的问题,如电机的优化设计。近年来,优化算法迅速发展,出现了通过模拟自然现象的启发式优化算法,如模拟退火法、遗传算法、粒子群算法、禁忌搜索法等相继出现。这些进化算法可在约束条件下对多个相互冲突的目标进行同时优化,为电机的优化提供了有效的方法。

电机设计、计算方法主要有磁路法、解析法和数值法。磁路法将电机本体的各部分等效为磁势源和磁阻,原理简单、直观、实现方便,但由于其对电机的参数、结构做了一定简化,计算存在误差,特别当电机结构比较复杂时,误差较大。解析法通过求解气隙磁场偏微分方程计算磁密,其物理概念清晰、计算简捷,但是由于忽略铁芯饱和,计算存在误差,而且解析法适用电机结构非常有限。数值法主要为有限元法,将求解区域分成单元网络,对各节点磁位建立大型代数方程组,并数值求解,其计算量大,但随着计算机技术的发展,有限元法是电机精确计算的首选。

闭合绕组永磁无刷直流电机是一种永磁体安装在转子上,定子绕组与传统直流电机一样闭合连接的新结构电机,其设计和控制都有特殊性,目前对于闭合绕组永磁无刷直流电机的设计优化还是空白。

经检索,中国专利公开号为101833607A的发明专利,该发明涉及一种双馈风力发电机多目标混合粒子群优化设计方法:(1)确定双馈风力发电机的约束条件和待优化的设计变量,并建立子目标函数方程,构成多目标函数;(2)以待优化的设计变量构造变量空间,根据目标值优劣构造种群的非支配解集;(3)利用Pareto占优机制,进行非支配解集排序,以非支配解为核心确定种群小生境,建立粒子速度更新机制,最终获得双馈风力发电机最优设计方案;(4)按照最优设计方案制造样机,检验电机实际运行指标并与设计方案给出的指标比较,如其超出运行指标要求范围,调整性能设计方案。

本发明则采用了差分进化算法,它是一种有效的实参数全局优化算法,对大多数函数而言,差分进化算法的性能均优于粒子群优化和其它进化算法。不同于粒子群优化,差分进化算法对个体采用选择、交叉和变异操作,概念简单易理解,算法结构紧凑、参数少、容易实现和运用,同时具有良好的鲁棒性和收敛性。

此外,本发明将有限元时步法仿真引入了优化设计中,在时域上,将电路和电磁场结合,获得完善的电机及其控制模型,将电机尽可能多的因素考虑进去,模拟电机实际运行情况。优化设计方案准确、可靠的前提是电机电磁场计算的精确性,否则计算误差会导致最终优化方案的不可靠,而有限元算法能够保证电机计算的精确度。而且电机设计方案的优劣不仅仅需要考虑其稳态特性,还需要考虑其动态性能,时步法则可在时间域上获得电机的动态性能。

发明内容

针对现有技术中的缺陷,本发明的目的是提供一种基于差分进化算法和有限元时步法的闭合绕组永磁无刷直流电机约束条件下的多目标优化设计方法,该方法考虑闭合绕组永磁无刷直流电机的特殊性,结合该电机的本体与控制,从提高电机转矩密度和减小成本这两个相悖的目标出发,同时考虑实际运行中电机必须满足转矩输出、功率因数、效率、转矩波动、发热、转轴强度等性能和设计的要求。

为实现上述目的,本发明技术方案如下:

一种闭合绕组永磁无刷直流电机优化设计方法,该方法包括下列步骤:

第一步:确定进化算法的参数和控制策略:变异因子F、交叉概率CR、种群规模NP、最大进化代数Gmax和终止条件。

第二步:针对闭合绕组永磁无刷直流电机的结构,根据需要,确定电机的待优化设计变量并构造D维实数变量空间X=[x1,x2,...,xD],X∈RD,如极对数、定子外径、定子轭部、转子轭部、气隙宽度、电机长度、永磁体厚度、极弧系数、齿宽、槽开口宽等,并且设定变量的取值边界xLi≤xi≤xHi(i=1,...,D);

结合电机本体与控制,选取系统的转矩密度和单位转矩的成本作为优化目标,建立目标函数方程minF(X)=min[f1(X),f2(X),...,fn(X)],f(X)为优化目标函数,如转矩、体积、效率、成本等;选取并联支路环流、功率因数、效率、转矩输出和波动、发热、结构强度等作为约束条件,建立约束方程G(X)=[g1(X),g2(X),...,gm(X)]≤0,g(X)为约束函数,如效率、功率因数、转矩等。

第三步,基于差分进化算法和有限元时步法,对电机进行优化设计。利用有限元时步法的数值仿真技术,对种群中每个闭合绕组永磁无刷直流电机的个体进行精确计算,根据仿真计算的结果,对种群进行交叉、变异和选择,形成新一代种群,不断进化。同时,根据现有种群的有限元时步法计算结果,更新Pareto最优解集,最终得到优化设计方案集。

第四步,对最优方案集中的闭合绕组永磁无刷直流电机,根据其机械加工、装配工艺等,得到电机实际最优设计。

第三步中具体实现步骤如下:

(1)初始化种群,利用随机函数rand[0,1],生成初代种群:

>xi,1j=randij[0,1](xHj-xLj)+xLj,(i=1,...,NP;j=1,...,D).---(1)>

(2)变异操作:对第G(G=1,...,Gmax)代种群(即当代种群)中的个体Xi,G(i=1,2...,NP),根据变异因子F,和种群中任意三个不同的个体,产生一个新的个体>Xr3,Gk+F(xr2,Gk-xr1,Gk).>

(3)交叉操作:对新生成的个体,根据交叉概率CR,按照交叉策略使新旧个体互相交换部分代码,即

>ui,Gk=xr3,Gk+F(xr2,Gk-xr1,Gk)randk[0,1]CRxi,Gkrandk[0,1]>CR,---(2)>

其中,k∈{1,...,D},r1,r2,r3∈{1,...,NP},且r1≠r2≠r3。

(4)对新形成的矢量Ui,G,判断其每一维是否超出优化问题参数的搜索空间[xLk,xHk],并将超出的各维用搜索空间的相应维,利用随机函数进行重新赋值:

>ui,Gk=randik[0,1](xHk-xLk)+xLk.---(3)>

从而得到试验个体Ui,G

(5)数值仿真:对当代种群的个体Xi,G和试验个体Ui,G所代表的闭合绕组永磁无刷直流电机设计方案,进行有限元时步法的建模,并实现数值仿真。最终,求得个体的约束值G(Xi,G)、G(Ui,G)和目标值F(Xi,G)、F(Ui,G)。

(6)评价选择:根据数值仿真的计算结果G(Xi,G)、G(Ui,G)、F(Xi,G)、F(Ui,G),比较Ui,G和Xi,G的适应度。若Ui,G的适应度优于Xi,G,在下一代种群中就用Ui,G取代Xi,G,否则保留Xi,G,即:

形成新一代种群Xi,G+1

(7)令G=G+1,更新当代种群。

(8)根据当代种群中所有个体的有限元时步法仿真计算结果,更新Pareto最优解集。判断是否已有最优解满足优化目标,或达到最大进化代数,如是则终止进化,退出优化程序。否则重复执行步骤(2)至(8),继续进行优化。

本发明针对闭合绕组永磁无刷直流电机的特殊性,同时考虑电机本体和控制部分的体积和成本;针对闭合绕组永磁无刷直流电机的特殊性,约束条件中包含了电机并联支路之间的环流;进化过程中,将有限元时步法引入闭合绕组永磁无刷直流电机的计算,进行精确的电机动态仿真;将转矩密度和单位转矩的成本同时作为优化目标。

与现有技术相比,本发明具有如下的有益效果:

本发明的差分进化稳定性强、搜索能力强、收敛速度快,而有限元时步法其近似电机实际物理变化过程,本发明直接将有限元法用于设计过程,可提高设计的准确度,为闭合绕组永磁无刷直流电机提供了一种准确、可靠的优化设计方法。由于闭合绕组永磁无刷直流电机近期才提出,因此本发明避免了由于对电机特性认识和经验不足,造成的设计困难和研究弯路。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1是本发明的流程图。

图2是一台的闭合绕组永磁无刷直流电机的示例。

图中1.2.3.4.5.6.7.8.9.10.11.线圈,1+.2+.3+.4+.5+.6+.7+.8+.9+.10+.11+.线圈上层边,1-.2-.3-.4-.5-.6-.7-.8-.9-.10-.11-.线圈下层边,S1H.S2H.S3H.S4H.S5H.S6H.S7H.S8H.S9H.S10H.S11H.与电源正极相连的电力电子开关,S1L.S2L.S3L.S4L.S5L.S6L.S7L.S8L.S9L.S10L.S11L.与电源负极相连的电力电子开关,并对所有电力电子开关管进行单独控制。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

实际电机设计生产中往往在满足转矩输出、效率、功率因数等基本性能的前提下,希望电机的体积和成本越低越好,即希望转矩密度提高的同时,成本也要降低,而这两个目标往往又是相悖的,而本发明可同时针对多个目标进行优化。此外,传统的电机设计中较多都采用磁路法,有限元法只是被用于对最后确定设计的验证,这往往会在设计过程中产生误差,而本发明直接将有限元法数值仿真技术用于设计过程,可提高设计的准确度。

图2为一台闭合绕组永磁无刷直流电机的示例(如申请号:201010588093.6,公开号CN102545509A中的闭合绕组永磁无刷直流电机),该种新电机永磁体励磁,并在转子上,线圈闭合连接,且每个线圈都有一对电力电子开关管实现电流换向。电机运行时,通过控制开关管的状态,使处于磁场N极下的所有线圈的电流方向相同且保持不变,磁场S极下的所有线圈的电流方向也相同且保持不变,但N极与S极下线圈的电流方向相反,形成不同的并联支路。可见,与传统电机不同,闭合绕组永磁无刷直流电机的电力电子开关管是根据电机设计的不同而变化的,因此,其成本和体积必须考虑控制和本体两个部分,而且优化过程中的变量选择,必须考虑该电机的特殊性。

本发明给出的基于差分进化算法和有限元时步法的闭合绕组永磁无刷直流电机优化设计方法的具体步骤可参见图1。

(1)确定差分进化算法参数和所采用的具体策略:变异因子F、交叉概率CR、种群规模NP、最大进化代数Gmax和终止条件等。

(2)将电机设计转化为约束条件下的多目标优化问题,构造变量、建立目标函数、确定约束函数。

将永磁体极数2P、定子槽数QS、气隙g、定子外径D1、定子内径Di1、转子外径D2、转子内径Di2、铁芯长度le、极弧系数αp、永磁体厚度hM、定子齿宽bt(平行齿)、定子槽形尺寸(槽开口bs0、槽开口高hs0、槽肩高hs1、槽高hs2)确定为待优化设计的变量X=[x1,x2,...,xD],X∈RD。并为各变量设定取值边界xLi≤xi≤xHi(i=1,...,D)。则第G代种群中的个体可表示为Xi,G(i=1,2...,NP)。

基于闭合绕组永磁无刷直流电机的控制和本体两部分,确定其体积和成本,将转矩密度和单位转矩的成本作为待优化的目标:

>f1=P1-pcu-pFe-psw-pfwΩ·1V---(5)>

>f2=(CCu+CFe+CPM+Csw)/(P1-pcu-pFe-psw-pfwΩ)---(6)>

其中,P1——输入功率,

pcu、pFe、psw、pfw——分别为铜耗、铁耗、开关损耗和机械损耗,

Ω——转子机械角速度,

V——电机及其控制器体积,

CCu、CFe、CPM、Csw——分别为铜材料费、铁材料费、永磁体材料费、所用功率电子开关管的费用。

为了避免没有意义的设计,电机输出转矩、功率因数、效率、转轴安全系数都必须大于设定的基础值;电机的转矩波动、热负荷都必须小于设定的基础值;此外闭合绕组永磁无刷直流电机由于其运行原理与直流电机相同,闭合绕组受到开关管的控制,形成并联支路,为了避免支路环流,回路中的感应电势和应约为零,将以上约束条件转化为函数:

输出转矩:                  >(P1-pcu-pFe-psw-pfwΩ)Tmin---(7)>

功率因数:                   

效率:                      η≥ηmin                      (9)

转轴安全度:               ns≥nsmin                   (10)

转矩波动:                 △T≤(△T)max                    (11)

热负荷:                 AJ≤(AJ)max                  (12)

回路感应电势和:          |∑e|≤|∑e|max            (13)

将上述公式中的电机设计问题,转化为多目标优化函数:

目标函数:          minF(X)=min[f1(X),f2(X),...,fn(X)]         (14)

约束函数:           G(X)=[g1(X),g2(X),...,gm(X)]≤0。           (15)

(3)初始化种群:>xi,1j=randij[0,1](xHj-xLj)+xLj(i=1,...,NP;j=1,...,D),>形成初代种群。由于电机的永磁体极数2P和定子槽数QS为整数,因此变量X中的相应维要做整数化处理,避免产生没有意义的设计方案:

(4)变异操作:对第G(G=1,...,Gmax)代种群(即当代种群)中的个体Xi,G(i=1,2...,NP),根据变异因子F,和种群中任意三个不同的个体,产生一个新的个体>Xr3,Gk+F(xr2,Gk-xr1,Gk).>

(5)交叉操作:对新生成的个体,根据交叉概率CR,按照交叉策略使新旧个体互相交换部分代码,即>ui,Gk=xr3,Gk+F(xr2,Gk-xr1,Gk)randk[0,1]CRxi,Gkrandk[0,1]>CR,>其中,k∈{1,...,D},r1,r2,r3∈{1,...,NP},且r1≠r2≠r3。

判断是否超出优化问题参数空间的搜索空间[xLk,xHk],并将超出的各维用搜索空间的相应维,利用随机函数进行初始化:从而得到实验个体Ui,G,对于Ui,G,同样需要对代表极数、槽数等的变量根据式(16)做整数化处理,避免出现无意义的设计。

(6)利用有限元时步法对Xi,G和Ui,G所代表的电机设计方案进行数值仿真。电机有限元时步法的建模过程如下:

首先用矢量磁位A描述交变电磁场,电机平面场域Ω上的电磁场问题可表示成边值问题:

>Ω:x(vAx)+y(vAy)=-J-vBryx+vBrxy+σAtΓ1:A=0---(17)>

其中,Bry、Brx——永磁体剩磁Br的x轴和y轴分量,

v——磁阻率,

Ω——电机的求解区域,

Γ1——电机定转子外边界,

——涡流密度。

然后进行有限元剖分后,磁位可表示为:

>A=Σi=1MNiAi,---(18)>

其中,Ni——形状函数,

M——有限元剖分的单元节点数,

Ai——单元节点的磁失位,

由此可得到矢量磁位的A的有限元方程。最后将得到的有限元方程在时间上进行离散化,得到有限元时步方程

>[Kn+SnΔt]Anin=[SnΔt]An-1in-1+[Pn]---(19)>

其中,K——阻尼系数矩阵,

S——电感系数矩阵,

P——源矩阵,

n——第n个时间步骤,

△t——时间步长。

同时结合离散化的电机机械运动方程:

>(λ+JmΔt)ωn-Te(n)=-Tl(n)+JmΔtωn-1---(20)>

其中,λ——阻尼系数,

Jm——转动惯量,

Te、Tl——电磁转矩、负载转矩,

ω——转子机械速度。

从初始时间t=0开始,随着时间的推进,不断重复建立电机该时刻的有限元时步方程、电机机械运动方程,可求得电机的动态变化过程。

(7)选择操作:根据有限元时步法的数值仿真结果,可获得闭合绕组永磁无刷直流电机的感应电势、输出转矩、功率因数、效率、体积、材料使用、转轴安全系数、转矩波动、热负荷等,即可求得相应的约束函数和目标函数值。根据约束函数和目标函数值,可比较Ui,G和Xi,G的适应度,保留适应度更优的个体。当两个个体都在可行域时,选择目标函数值更小的个体;当一个个体在可行域而另一个不在可行域时,选择可行域的个体;当两个体都不在可行域时,选择违反约束小的个体,即产生新一代种群的个体。

(8)令进化代数G=G+1,更新当代种群。

(9)根据当代种群的约束函数值和目标值,更新Pareto最优解集。判断是否已有最优解满足优化目标,或达到最大进化代数,如是则终止进化,退出优化程序。否则,回到步骤(4),直到设计满足要求或者达到最大进化代数。

对于Pareto的最优解集中的所有解,根据实际情况选择对应的闭合绕组永磁无刷直流电机设计方案。如在满足其他性能的条件下,选取转矩密度最大、或单位转矩费用最小、或效率最高、或发热最小等的设计。对所对应的闭合绕组永磁无刷直流电机设计方案,绘制其各部分图纸(定子、转子、永磁体、机壳)、绕组接线图;确定其机械加工(硅钢片切割及叠压、永磁体形状及充磁、定子绕组)、装配工艺(嵌线、永磁体安装、绝缘浸漆等);根据图2中的电路连线,设计并制作电机驱动板电路(控制及驱动电路、功率电子开关管、与电机的接线)。随后,将电机实际运行时各个性能指标(输出转矩、制造成本、功率因数、效率、转矩波动、发热、转轴强度、感应电势、体积等)与优化算法给出的仿真计算结果进行比较,如果差别大于设定值,则调整进化算法的参数和控制策略,即调整变异因子F、或交叉概率CR、或种群规模NP、或最大进化代数Gmax、或约束与目标性能计算方程,重新根据图1进行优化设计;若差别小于设定,则得到可用于实际的最优电机设计方案。

以上是以图2的闭合绕组永磁无刷直流电机为实施例,进行说明,但并不限制在图2电机,对其他结构的闭合绕组永磁无刷直流电机本发明都适用。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号