首页> 中国专利> 初生硅细化的高硅铝合金流变浆料的制备方法

初生硅细化的高硅铝合金流变浆料的制备方法

摘要

本发明公开了一种初生硅细化的高硅铝合金流变浆料的制备方法;具体为:将铝合金铸造涂料涂抹于机械滚筒内壁上,烘干,预热;设置机械滚筒相对地面水平线的倾角为10°~45°,搅拌速度为20~250r/min;使高硅铝合金熔体温度保持在其液相线以上30~50℃,快速浇注进入机械滚筒,搅拌,即得。将搅拌后流出的流变浆料储存在保温炉,炉温保持在液相线上5~15℃过热度,随即在10~20秒之间进行后续铸造成形。本发明的制备方法处理过程短、效率高,利于工业生产,制备得到的浆料采用高压、挤压铸造等成形技术能制备出表面光洁度高、力学性能优良的铸件,是制备优质高硅铝合金的极佳选择,具有巨大的市场应用潜力。

著录项

  • 公开/公告号CN103934437A

    专利类型发明专利

  • 公开/公告日2014-07-23

    原文格式PDF

  • 申请/专利权人 上海交通大学;

    申请/专利号CN201410129535.9

  • 申请日2014-04-01

  • 分类号B22D27/04(20060101);B22D27/20(20060101);

  • 代理机构31236 上海汉声知识产权代理有限公司;

  • 代理人牛山;陈少凌

  • 地址 200240 上海市闵行区东川路800号

  • 入库时间 2024-02-20 00:07:10

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-02-08

    授权

    授权

  • 2014-08-20

    实质审查的生效 IPC(主分类):B22D27/04 申请日:20140401

    实质审查的生效

  • 2014-07-23

    公开

    公开

说明书

技术领域

本发明属于半固态金属成形领域,涉及一种铝硅合金制备方法,特别涉及一种初生 硅细化的高硅铝合金流变浆料的制备方法。

背景技术

铝占地壳总量的8.13wt%,是金属元素中储藏最丰富的元素之一。铝及铝合金具有 密度小、重量轻、比强度高、耐蚀性良好、导电导热性优良等特点,是现实中被广泛使 用的有色金属材料。随着原油价格的上涨、社会环保的要求以及制造技术的飞速发展, 在节能、减重、环保的要求下,交通运输、航空航天等工业领域所用材料加大轻量化的 发展,以达到高强、高效、节能的目的。高硅铝合金由于比重小、硬度高、耐磨性好、 铸造成形性好、尺寸稳定性高等优点,在材料使用低能耗、轻量化的要求下具有取代传 统钢铁材料的较大潜力,有望被广泛应用在航空航天、汽车船舶等工业中。高硅铝合金 中Si元素含量通常在18-30wt%之间,其力学性能与该元素在合金中的含量和形貌紧密 相关。随着铝合金中Si元素含量的增大,合金的微观组织中通常会形成粗大的五瓣星 形状、板片状、八面体以及其它复杂形貌的初生硅。这些形状复杂、粗大的初生硅严重 的割裂合金基体。在外力作用下,局部应力集中容易在粗大初生硅相的尖端和棱角部位 产生,显著影响合金塑性和耐磨性,严重降低合金力学性能。此外,高硅铝合金制造的 各种零部件在加工过程中,硬脆的粗大初生硅容易受力剥落,在降低机加工零件表面的 光洁度的同时加速了机加工刀具的磨损。高硅铝合金中粗大的初生硅限制了其应用范 围,因此,高硅铝合金初生硅的细化工艺,对该系列合金的应用和推广具有重大意义。

工业生产中通常采用化学细化法对过共晶铝硅合金初生硅进行细化处理,其主要是 通过在合金中添加适量的细化剂(比如磷,稀土等元素)达到细化目的。通过对现有文 献检索发现,专利公开号为CN102417998A的中国专利公开了一种过共晶硅细化处理工 艺,该方法存在对低Si含量过共晶铝硅合金的初生Si有一定的细化效果,但对高Si 含量的效果不明显的问题。此外,类似该专利发明的化学细化法还存在作用时间短、细 化效果不稳定等缺点,无法满足细化高硅铝合金初生硅的要求。20世纪70年代美国麻 省理工学院提出的半固态成形技术通过在金属固态液态相互转变的过程中施加外力,降 低了加工温度和金属变形抗力,为实现形状复杂、高精度铸件的近净成形提供了新途径。 其中机械搅拌法通过对凝固过程中的熔体施加机械剪切力从而实现枝晶破碎、晶粒细化 的目的,是半固态技术最有效的方法之一(如中国专利:专利公开号为CN2471450Y;日 本专利:专利号为1-192447;美国专利:专利号为3958650、5501266和5040589);然 而,这些方法搅拌强度较低仅适合处理硅含量较低的亚共晶铝硅合金;此外,其单次处 理的合金浆料有限,难以满足工业生产连续性生产要求;再者,其工作环境需要使浆料 处于等温保温状态,为初生硅生长提供较为有利的条件,对其细化不利。因此,针对目 前工业技术对高硅铝合金初生硅细化效果的不足,本发明专利吸收半固态机械搅拌的特 点,创造性的提出半固态机械滚筒搅拌工艺细化高硅铝合金初生硅并制备流变浆料的方 法。

发明内容

本发明的目的在于针对目前工业技术对高硅铝合金初生硅细化效果的不足,高硅铝 合金初生硅粗大这一问题,提供一种初生硅细化的高硅铝合金流变浆料的制备方法。本 发明通过对液相线温度附近的熔体施加机械流变处理,实现熔体激冷,提高初生硅的形 核率,达到细化初生硅的效果;另一方面流变机械剪切力的引入,对凝固析出后初生硅 的生长模式产生巨大影响,达到破碎枝晶、抑制初生硅持续生长、细化晶粒的目的,实 现较短时间制备出初生硅晶粒细小、边缘圆滑的高硅铝合金流变浆料的目标。该方法工 艺简单易行,生产成本低廉,初生硅细化效果良好,是高效可行的细化高硅铝合金初生 硅的方法。

为实现以上目的,本发明通过如下技术方案解决其技术问题。

本发明涉及一种初生硅细化的高硅铝合金流变浆料的制备方法,所述方法包括如下 步骤:

A、将铝合金铸造涂料涂抹于机械滚筒内壁上,烘干,预热;

B、设置机械滚筒相对地面水平线的倾角为10°~45°,搅拌速度设为20~ 250r/min;

C、根据不同Si含量使高硅铝合金熔体温度保持在其液相线以上30~50℃,快速浇 注进入机械滚筒,搅拌,即得所述初生硅细化的高硅铝合金流变浆料。

优选地,步骤A中,所述预热的温度为200~300℃。

优选地,步骤C中,所述高硅铝合金熔体经如下步骤处理而得:

a、将高硅铝合金母料熔化;

b、根据不同Si含量,在熔化后得到的熔体温度高于其液相线50~70℃下充分搅拌 使合金成分均匀,随后静置10~20分钟;

c,在熔体温度降到液相线以上20~30℃精炼,随后保温5~15分钟进行充分搅拌、 扒渣,最后让熔体静置15~25分钟,即可。

更优选地,步骤a中,所述熔化具体为:将高硅铝合金母料预热1.5~2.5小时达 到150~200℃后采用工业电炉进行熔化。

优选地,步骤C中,所述高硅铝合金中Si含量为18~30wt%,对应的液相线温度为 680~820℃。

优选地,步骤C中,从机械滚筒搅拌后流出的所述流变浆料储存在保温炉,炉温保 持在所述液相线上5~15℃过热度。

更优选地,所述流变浆料进入保温炉后随即在10~20秒内进入后续成形工序。

进一步优选地,所述后续成形工序包括浇注制备铸锭后挤压、锻造或轧制成形,或 是直接铸造成形。

本发明的工作机理为:高硅铝合金初生硅相在熔体冷却到液相线的时候析出,以小 平面形式生长为不规则多边形块体。在初生硅析出的时候,对其施加机械剪切力,一方 面实现熔体激冷,达到细化初生硅的效果;另一方面剧烈搅拌对刚结晶的初生硅产生强 烈的剪切作用,使其长大过程产生的枝晶得到破碎,实现进一步的细化。为了满足对高 硅铝合金高力学性能的要求,充分利用半固态成形技术的优点,本发明专利吸收半固态 机械搅拌的特点,创造性的提出半固态机械搅拌工艺细化高硅铝合金初生硅并制备流变 浆料的方法。

与现有技术相比,本发明具有如下有益效果:

本发明的高硅铝合金初生硅细化及其流变浆料制备方法,通过在初生硅析出初期对 其施加机械剪切力实现熔体激冷,达到细化效果。此外,强烈的搅拌对初生硅结晶后的 生长模式产生影响,初生硅的枝晶得到破碎实现进一步细化。再者,本方法制备初生Si 细化的流变浆料不需要添加额外的细化元素,而且流变处理过程短、效率高,十分利于 工业生产,制备得到的浆料采用高压、挤压铸造等成形技术能制备出表面光洁度高、力 学性能优良的铸件,是制备优质高硅铝合金的极佳选择,具有巨大的市场应用潜力。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特 征、目的和优点将会变得更明显:

图1为Al-18Si合金未经半固态处理直接水淬的微观组织形貌图;

图2为经流变处理后的Al-18Si合金流变浆料水淬后的微观组织形貌图;

图3为Al-30Si合金未经半固态处理直接水淬的微观组织形貌图;

图4为经流变处理后的Al-30Si合金流变浆料水淬后的微观组织形貌图。

具体实施方式

下面结合具体实施例和附图对本发明进行详细说明。以下实施例将有助于本领域的 技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的 普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些 都属于本发明的保护范围。

本发明采用机械滚拌法细化高硅铝合金初生硅相并制备其流变浆料。

往高速旋转的机械滚筒浇注30~50℃过热度的高硅铝合金熔体,熔体在滚筒内壁激 冷作用下产生大量初生硅晶核。晶核在滚筒剪切力作用下从内壁脱落,游离于合金熔体, 提高了初生形核率,使其达到细化效果。持续强烈的滚筒搅拌,对刚从熔体析出的初生 硅的生长起到抑制和破碎作用。刚析出的初生硅,在高温熔体中受到持续的剪切作用, 其生长的相边界前沿受力破碎并趋于光滑,对后续成形铸件力学性能有利。经过机械搅 拌处理,激冷和剪切的综合作用成功制备出初生硅细小的高硅铝合金流变浆料。

本发明的高硅铝合金初生硅细化及其流变浆料的制备方法,其适用于Si含量18~ 30wt%的铝硅合金,包括前道常规熔炼和后续流变处理工序。

所述熔炼工艺工序步骤如下:

将各合金母料预热2小时达到150~200℃,采用坩埚电阻炉或其它工业电炉将合金 熔化。待合金熔化后熔体温度高于液相线50~70℃(高硅铝合金随Si含量不同液相线 温度变化较大,Si含量18~30wt%的铝硅合金其液相线温度范围为680~820℃。)下充 分搅拌使合金成分均匀,随后静置15分钟。使熔体温度降到液相线以上20~30℃精炼, 随后保温10分钟进行充分搅拌、扒渣,最后让熔体静置20分钟。

后续流变处理工序包括以下步骤:

(1)机械滚筒预热:在机械滚筒内均匀涂抹铝合金铸造涂料,烘干,将滚筒预热 至200~300℃,确保干燥;

(2)流变细化处理:将高硅铝合金熔化,根据不同Si含量使其熔体温度保持在液 相线以上30~50℃,通过定量浇注系统快速输送进入机械滚筒。机械滚筒倾斜角(相对 地面水平线)设置为10~45°之间,搅拌速度为20~250r/min;

(3)浆料储存及成形:用一个温度可控制的保温炉装载从滚筒搅拌后流出的高硅 铝合金流变浆料,保温炉温度根据不同Si含量的高硅合金保持在5~15℃过热度。高硅 铝合金流变浆料不能在保温炉静置停留时间过长,需要在10~20秒内被转运输送进入 后续高压、低压、挤压铸造等成形工序。高硅铝合金流变浆料除了铸造成形,也可以选 择直接浇注进入金属铸锭模制备合金铸锭,随后进行挤压、锻造、轧制等塑性加工工序。

下面以Al-18Si和Al-30Si合金为实施例对本发明进行详细说明。

实施例1

Al-18Si合金初生硅细化及流变浆料的制备。将合金在坩埚电阻炉内熔化,于780℃ 除气精炼,静置10分钟,随后将熔体温度降到760℃。设定机械滚筒倾角为45°,转 速为100r/min,预热滚筒内壁至300℃。把精炼后的合金熔体在760℃下浇注进入机械 滚筒进行流变处理,处理后的熔体直接入水淬火用于组织观察。图1所示为Al-18Si合 金未经半固态处理直接水淬的微观组织,图2为采用本发明方法处理后该合金流变浆料 水淬后的微观组织。从图1、2可以明显看出,经本发明处理后,Al-18Si合金的初生硅 尺寸得到较明显的细化,晶粒边缘棱角较为圆滑,非常适合后续的压铸成形。

实施例2

Al-18Si合金初生硅细化及流变浆料的制备。将合金在坩埚电阻炉内熔化,于778℃ 除气精炼,静置10分钟,随后将熔体温度降到760℃。设定机械滚筒倾角为10°,转 速为20r/min,预热滚筒内壁至300℃。把精炼后的合金熔体在760℃下浇注进入机械滚 筒进行流变处理,处理后的熔体直接压铸成型,即可得到高硅铝合金铸件。

实施例3

Al-30Si合金初生硅细化及流变浆料的制备。将合金在坩埚电阻炉内熔化,于880℃ 除气精炼,静置15分钟,随后将熔体温度降到860℃。设定机械滚筒倾角为30°,转 速为30r/min,预热滚筒内壁至300℃。把精炼后的合金熔体在860℃下浇注进入机械滚 筒进行流变处理,处理后的熔体直接入水淬火用于组织观察。图3所示为Al-30Si合金 未经半固态处理直接水淬的微观组织,图4为采用本发明方法处理后该合金流变浆料水 淬后的微观组织。从图3、4可以明显看出,经本发明处理后,Al-30Si合金的初生硅尺 寸得到较明显的细化,晶粒边缘棱角较为圆滑,非常适合后续的压铸成形。

实施例4

Al-30Si合金初生硅细化及流变浆料的制备。将合金在坩埚电阻炉内熔化,于880℃ 除气精炼,静置15分钟,随后将熔体温度降到860℃。设定机械滚筒倾角为45°,转 速为250r/min,预热滚筒内壁至300℃。把精炼后的合金熔体在860℃下浇注进入机械 滚筒进行流变处理,处理后的熔体直接压铸成型,即可得到高硅铝合金铸件。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特 定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影 响本发明的实质内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号