首页> 中国专利> 一种磨削加工过程诊断及智能优化系统和方法

一种磨削加工过程诊断及智能优化系统和方法

摘要

本发明涉及针对磨削加工过程进行在线监控的技术领域,特别是一种磨削加工过程诊断及智能优化系统和方法。它包括传感器、数据采集卡、磨削过程诊断系统和磨削工艺智能优化系统;其中:该传感器包括功率传感器和位移传感器,该传感器通过数据采集卡连接到磨削过程诊断系统,该磨削过程诊断系统进一步连接磨削工艺智能优化系统。本发明是将磨削过程从一个系统级的角度进行思考,且通过对于加工过程的监控,依据磨削的科学进行过程数据的分析,进行优化方案的提出。这是一种科学性的优化,而非经验性的优化。

著录项

  • 公开/公告号CN103395001A

    专利类型发明专利

  • 公开/公告日2013-11-20

    原文格式PDF

  • 申请/专利权人 王晋生;

    申请/专利号CN201310315387.5

  • 发明设计人 王晋生;

    申请日2013-07-25

  • 分类号B24B49/10(20060101);

  • 代理机构31213 上海新天专利代理有限公司;

  • 代理人王敏杰

  • 地址 201208 上海市浦东新区俱进路285弄175号101号

  • 入库时间 2024-02-19 20:25:55

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-06-29

    专利权的转移 IPC(主分类):B24B49/10 登记生效日:20160608 变更前: 变更后: 申请日:20130725

    专利申请权、专利权的转移

  • 2015-09-23

    授权

    授权

  • 2013-12-18

    实质审查的生效 IPC(主分类):B24B49/10 申请日:20130725

    实质审查的生效

  • 2013-11-20

    公开

    公开

说明书

技术领域

本发明涉及针对磨削加工过程进行在线监控的技术领域,特别是一种磨削加工过程诊断及智能优化系统和方法。 

背景技术

由于磨削过程的复杂性,目前对于磨削过程优化的方式绝大多数为经验性的方法。一般的应用会将这种经验集成到专家系统或者神经网络系统中,通过对于某个磨削过程进行“学习、训练、系统预测、修正、实际验证”的方式进行磨削过程的优化。参见中国发明专利200910152759.0的外圆磨削多参数集成质量监测装置及方法。该种监测方法需要大量的实验数据作为支持,首先监测不同磨削输入参数下的各种传感器信号,然后通过神经网络系统建立信号特征值和工件粗糙度、圆度和沟形误差之间的经验耦合关系。 

此类系统的问题在于,并非以磨削技术的科学本质为依据进行优化,更多的是以数学方式,通过所获得的数据集作为基础进行数学方面的优化。实际上数学上的优化有两个缺点:1、受限于所获得数据的质量,而决定了计算的依据;2、实际的磨削过程是一个复杂的系统工程,需要综合考虑多方面的影响,包括了机器、磨具、被加工材料和加工参数等因素。而数学上优化一般只基于加工参数的优化,但是却有可能出现其优化方案有可能只能在参数级进行调整,抑或受限于其他因素的影响而无法实现。 

发明内容

本发明的目的在于提供一种磨削加工过程诊断及智能优化系统和方法,主要解决上述现有技术所存在的问题,本发明是将磨削过程从一个系统级的 角度进行思考,且通过对于加工过程的监控,依据磨削的科学进行过程数据的分析,进行优化方案的提出。这是一种科学性的优化,而非经验性的优化。 

为实现上述目的,本发明是这样实现的。 

一种磨削加工过程诊断及智能优化系统,其特征在于:它包括传感器、数据采集卡、磨削过程诊断系统和磨削工艺智能优化系统;其中:该传感器包括功率传感器和位移传感器,该传感器通过数据采集卡连接到磨削过程诊断系统,该磨削过程诊断系统进一步连接磨削工艺智能优化系统。 

所述的磨削加工过程诊断及智能优化系统,其特征在于:该传感器还包括力传感器、声发射传感器、加速度传感器和温度传感器。 

一种磨削加工过程诊断及智能优化方法,通过如上所述的系统来实施,其特征在于:具体步骤是: 

第一步:把诊断对象的磨削加工参数输入到磨削过程诊断系统中; 

第二步:把功率传感器安装到主轴电机上,位移传感器安装到砂轮进给装置上; 

第三步:进行第一次磨削循环,通过数据采集卡把功率信号和位移传感器信号采集到磨削过程诊断系统中储存起来; 

第四步:将采集到的第一次磨削循环的功率信号功率信号进行坐标变换,转变成磨除率-功率图谱;从图谱中提取阈值功率                                                  和比切削功率   

第五步:进行第二次磨削循环,重复第三步、第四步的采集和坐标变换,提取   直到第n次磨削循环;当出现磨削问题时,提取   

第六步:比较   和   的大小;如果   则判断为砂轮以堵塞的方式失效,造成微观交互作用中切屑/工件的摩擦严重,出现磨削问题,并将此判断结果输送到磨削工艺智能优化系统,并执行第七步;如果   则 比较   和   的大小,如果   则判断为磨削问题是由微观交互作用中切屑/结合剂的摩擦严重导致的,并将此判断结果输送到磨削工艺智能优化系统,并执行第八步; 

第七步:磨削工艺智能优化系统通过其输出装置给出如下优化方案: 

a.减小切屑体积,使切屑容易排出; 

b.减少工件与切屑的接触时间,从而减少磨擦热量的生成; 

c.提高砂轮的容屑能力; 

第八步:磨削工艺智能优化系统通过其输出装置给出的优化方案为降低砂轮硬度。 

所述的方法,其特征在于:该第一步中的磨削加工参数包括磨床、磨具、工件材料特性,磨削工艺参数。 

本发明系统和方法使得磨削过程的优化由经验指导性的优化转变为由科学指导性的优化。它会大幅度提高磨削加工过程的质量,从而使得精密加工技术有一个大幅度的提高。在经济方面,磨削加工占到目前冷加工中的20%的份额,但是从成本上约占80%,而通过本发明系统和方法的应用,可以大幅度降低磨削加工所产生的成本,粗略估计约可优化30%,可产生的经济价值超过百亿。 

附图说明

图1是本发明系统的结构框图。 

具体实施方式

如图1所示,它本发明公开了一种磨削加工过程诊断及智能优化系统。如图所示:它包括传感器1(带有电源5)、数据采集卡2、磨削过程诊断系统3和磨削工艺智能优化系统4;其中:该传感器1包括功率传感器和位移传 感器,该传感器1通过数据采集卡2连接到磨削过程诊断系统3,该磨削过程诊断系统3进一步连接磨削工艺智能优化系统4。 

本发明中,磨削过程诊断系统3可得到的输入信息包括:机床,砂轮,工件材料、磨削工艺参数和数据采集系统的输出信号。采集到的传感器信号可以实时显示在电脑中,进行现场分析,同时也可以保存到电脑中。该诊断系统需要对监测信号进行处理和简单的分析,包括滤波,平均值,面积、峰值、Y轴差等。然后对应位移信号,把功率信号进行坐标变换,转变成功率-磨除率图表。根据功率-磨除率图表和微观交互作用分析,得出诊断结果。 

本发明中,磨削工艺智能优化系统4,用于根据磨削过程诊断系统3得出的诊断结果,相应地给出综合优化方案。 

本发明中的磨削过程诊断系统3和磨削工艺智能优化系统4可使用普通PC、IPAD等智能设备。 

该传感器1还包括力传感器、声发射传感器、加速度传感器和温度传感器。 

一种磨削加工过程诊断及智能优化方法,通过如上所述的系统来实施,其特征在于:具体步骤是: 

第一步:把诊断对象的磨削加工参数输入到磨削过程诊断系统3中; 

第二步:把功率传感器安装到主轴电机上,位移传感器安装到砂轮进给装置上; 

第三步:进行第一次磨削循环,通过数据采集卡2把功率信号和位移传感器信号采集到磨削过程诊断系统3中储存起来; 

第四步:将采集到的第一次磨削循环的功率信号功率信号进行坐标变换,转变成磨除率-功率图谱;从图谱中提取阈值功率   和比切削功率   

第五步:进行第二次磨削循环,重复第三步、第四步的采集和坐标变换,提取   直到第n次磨削循环;当出现磨削问题时,提取   

第六步:比较   和   的大小;如果   则判断为砂轮以堵塞的方式失效,造成微观交互作用中切屑/工件的摩擦严重,出现磨削问题,并将此判断结果输送到磨削工艺智能优化系统4,并执行第七步;如果   则比较   和   的大小,如果   则判断为磨削问题是由微观交互作用中切屑/结合剂的摩擦严重导致的,并将此判断结果输送到磨削工艺智能优化系统4,并执行第八步; 

第七步:磨削工艺智能优化系统4通过其输出装置给出如下优化方案: 

a.减小切屑体积,使切屑容易排出; 

b.减少工件与切屑的接触时间,从而减少磨擦热量的生成; 

c.提高砂轮的容屑能力; 

第八步:磨削工艺智能优化系统4通过其输出装置给出的优化方案为降低砂轮硬度。 

该第一步中的磨削加工参数包括磨床、磨具、工件材料特性,磨削工艺参数。 

综上所述仅为本发明的较佳实施例而已,并非用来限定本发明的实施范围。即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应为本发明的技术范畴。 

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号