首页> 中国专利> 一种薄带连铸700MPa级高强耐候钢制造方法

一种薄带连铸700MPa级高强耐候钢制造方法

摘要

一种薄带连铸700MPa级高强耐候钢制造方法,其包括如下步骤:1)在双辊连铸机中铸造厚度为1-5mm的铸带,其化学成分重量百分比为:C 0.03-0.1%,Si≤0.4%,Mn 0.75-2.0%,P 0.07-0.22%,S≤0.01%,N≤0.012%,Cu 0.25-0.8%,此外,还包含Nb、V、Ti、Mo中一种以上,Nb 0.01-0.1%,V 0.01-0.1%,Ti 0.01-0.1%,Mo 0.1-0.5%,其余为Fe和不可避免杂质;2)对铸带进行冷却,冷却速率大于20℃/s;3)对铸带进行热轧,热轧温度1050-1250℃,压下率20-50%,形变速率>20s

著录项

  • 公开/公告号CN103305759A

    专利类型发明专利

  • 公开/公告日2013-09-18

    原文格式PDF

  • 申请/专利权人 宝山钢铁股份有限公司;

    申请/专利号CN201210066978.9

  • 申请日2012-03-14

  • 分类号C22C38/16;B22D11/06;C21D8/02;

  • 代理机构上海开祺知识产权代理有限公司;

  • 代理人竺明

  • 地址 201900 上海市宝山区富锦路885号

  • 入库时间 2024-02-19 20:21:12

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-10-29

    授权

    授权

  • 2013-10-23

    实质审查的生效 IPC(主分类):C22C38/16 申请日:20120314

    实质审查的生效

  • 2013-09-18

    公开

    公开

说明书

技术领域

本发明涉及薄带连铸工艺,特别涉及一种薄带连铸700MPa级高强耐 候钢制造方法,钢带的屈服强度≥700MPa,抗拉强度≥780MPa,延伸率≥ 18%,180°弯曲性能合格,具有尺寸细小的、均匀的贝氏体加针状铁素体 组织,从而具有良好的强度和延伸率匹配。

背景技术

耐候钢或称耐大气腐蚀钢,是指具有保护锈层耐大气腐蚀,可用于制 造车辆、桥梁、塔架、集装箱等钢结构的低合金结构钢。与普碳钢相比, 耐候钢在大气中具有更优良的抗蚀性能。与不锈钢相比,耐候钢只有微量 的合金元素,诸如磷、铜、铬、镍、钼、铌、钒、钛等,合金元素总量仅 占百分之几,而不像不锈钢那样,达到百分之十几,因此价格较为低廉。

近年来使用较多的耐大气腐蚀钢有295MPa级的09CuPTiRE、345MPa 级的09CuPCrNi以及450MPa级的Q450NQR1。随着国民经济的发展对车 辆减重、提速、增加货运量、延长使用寿命和降低物流成本等方面的要求 不断提高,上述钢种很难满足要求,开发高强度、高耐蚀性、低成本的耐 大气腐蚀钢具有重要的实用价值和经济意义。

目前国内外已就高强度耐大气腐蚀钢及其制造方法申请了多项专利, 其中700MPa强度级别的耐大气腐蚀钢,大都采用Nb、V、Ti、Mo复合 微合金化技术,通过细晶强化和沉淀强化来提高耐大气腐蚀钢的综合力学 性能。

中国专利200610030713.8公开了一种屈服强度700MPa级耐大气腐蚀 钢及其制造方法,该方法制造耐大气腐蚀钢板的化学成分为:C 0.05-0.1%, Si≤0.5%,Mn 0.8-1.6%,P≤0.02%,S≤0.01%,Al 0.01-0.05%,Cr 0.4-0.8%, Ni 0.12-0.4%,Cu 0.2-0.55%,Ca 0.001-0.006%,N 0.001-0.006%,此外还 包含Nb≤0.07%,Ti≤0.18%,Mo≤0.35%中至少两种,其余为Fe和不可 避免的杂质。钢板的屈服强度≥700MPa,抗拉强度≥750MPa,延伸率≥ 15%。

中国专利201010246778.2公开了一种低成本屈服强度700MPa级非调 质处理高强耐候钢及其制造方法,该方法制造耐候钢板的化学成分为:C 0.05-0.1%,Si≤0.15%,Mn 1.5-2%,P≤0.015%,S≤0.01%,Cr 0.3-0.8%, Ni 0.15-0.4%,Cu 0.2-0.4%,Nb 0.02-0.08%,Ti≤0.09-0.15%,N≤0.005%, 其余为Fe和不可避免的杂质。钢板的屈服强度≥700MPa,抗拉强度≥ 800MPa,延伸率≥18%。

中国专利200610125125.2公开了一种特高强度耐大气腐蚀钢,该方法 制造耐大气腐蚀钢板的化学成分为:C 0.01-0.07%,Si 0.25-0.5%,Mn 1.6-2, P≤0.018%,S≤0.008%,Al≤0.035%,Cr 0.4-0.75%,Ni 0.25-0.6%,Cu 0.2-0.5%,Nb 0.03-0.08%,Ti≤0.02%,Mo 0.1-0.4%,B 0.0005-0.003,其 余为Fe和不可避免的杂质。钢板的屈服强度≥700MPa,抗拉强度≥ 750MPa,延伸率≥10%。

上述700MPa强度级别的高强耐大气腐蚀钢,均采用了微合金化路线, 在成分体系中均含有Nb,V,Ti,Mo等合金元素,并且均采用传统热轧 工艺生产。传统热轧工艺流程是:连铸+铸坯再加热保温+粗轧+精轧+ 冷却+卷取,即首先通过连铸得到厚度为200mm左右的铸坯,对铸坯进 行再加热并保温后,再进行粗轧和精轧,得到厚度一般大于2mm的钢带, 最后对钢带进行层流冷却和卷取,完成整个热轧生产过程。如果要生产厚 度小于2mm的钢带,一般要对热轧钢带继续进行冷轧以及后续退火来完 成。利用传统工艺生产微合金高强耐大气腐蚀钢,存在的主要问题有:

(1)工艺流程长、能耗高、机组设备多、基建成本高,导致生产成 本高。

(2)耐大气腐蚀钢中含有较高含量的提高钢带耐大气腐蚀性能的磷、 铜等易偏析元素,传统工艺由于铸坯凝固冷却速度慢,容易造成磷、铜等 元素的宏观偏析,从而导致铸坯的各向异性和出现宏观裂纹,成才率较低。

(3)耐大气腐蚀钢的耐侯性主要取决于磷和铜的共同作用,由于其 在传统工艺中存在易偏析特征,因此在利用传统工艺生产高强耐大气腐蚀 钢的成分设计中,往往不添加磷,其含量按照杂质元素水平来控制,通常 ≤0.025%;铜的添加量在0.2-0.55%的范围,实际生产中通常取下限。其结 果造成钢带的耐侯性不高。

(4)传统工艺中,由于微合金元素在热轧过程中不能保持为固溶体, 发生部分析出,导致钢材强度提高,因此会显著增加轧制载荷,增加能耗 和辊耗,对装备的损伤较大,从而就限制了可经济地和实际地生产高强耐 候钢热轧产品的厚度范围,通常是≥2mm。对传统热轧产品继续进行冷轧, 可进一步降低钢带厚度,然而热轧钢带的高强度导致冷轧也存在困难。一 是高的冷轧载荷对装备的要求较高,损伤较大;二是热轧产品中由合金元 素析出的第二相,使冷轧后钢带的再结晶退火温度显著增加。

(5)传统工艺中,生产含有微合金元素的高强产品时,通常是利用 形变细化奥氏体晶粒原理,因此精轧的开轧温度通常低于950℃,终轧温 度在850℃左右,在较低温度下进行轧制,再加上随轧制过程进行形变量 的增加,会导致钢带强度显著增加,这也会显著增加热轧难度和消耗。

如果采用薄板坯连铸连轧工艺生产微合金高强耐候钢,可在一定程度 上克服传统工艺的缺点。薄板坯连铸连轧工艺流程是:连铸+铸坯保温均 热+热连轧+冷却+卷取。该工艺与传统工艺的主要区别是:薄板坯工艺 的铸坯厚度大大减薄,为50-90mm,由于铸坯薄,铸坯只要经过1-2道次 粗轧(铸坯厚度为70-90mm时)或者不需要经过粗轧(铸坯厚度为50mm 时),而传统工艺的连铸坯要经过反复多道次轧制,才能减薄到精轧前所 需规格;而且薄板坯工艺的铸坯不经冷却,直接进入均热炉进行均热保温, 或者少量补温,因此薄板坯工艺大大缩短了工艺流程,降低了能耗,减少 了投资,从而降低了生产成本;另外薄板坯工艺的铸坯凝固冷却速度加快, 可在一定程度上减少元素宏观偏析,从而减少了产品缺陷,提高了成材率, 也正是因为这点,利用薄板坯工艺生产微合金高强耐大气腐蚀钢的成分设 计适当放宽了提高耐腐蚀性的元素磷、铜的含量范围,这对于提高钢的耐 候性能是有利的。

中国专利200610123458.1公开了一种基于薄板坯连铸连轧流程采用 Ti微合金化工艺生产700MPa级高强耐候钢的方法,该方法制造耐候钢板 的化学成分为:C 0.03-0.07%,Si 0.3-0.5%,Mn 1.2-1.5,P≤0.04%,S≤ 0.008%,Al 0.025-0.05%,Cr 0.3-0.7%,Ni 0.15-0.35%,Cu 0.2-0.5%,Ti 0.08-0.14%,N≤0.008%,其余为Fe和不可避免的杂质。钢板的屈服强度 ≥700MPa,抗拉强度≥775MPa,延伸率≥21%。在该专利中,磷是按照 杂质元素来控制的,含量≤0.04%,较传统工艺的≤0.025%,有所放宽。

中国专利200610035800.2公开了一种基于薄板坯连铸连轧工艺生产 700MPa级V-N微合金化耐大气腐蚀钢的方法,该方法制造耐大气腐蚀钢 板的化学成分为:C≤0.08%,Si 0.25-0.75%,Mn 0.8-2,P≤0.07-0.15%, S≤0.04%,Cr 0.3-1.25%,Ni≤0.65%,Cu 0.25-0.6%,V 0.05-0.2%,N 0.015-0.03%,其余为Fe和不可避免的杂质。钢板的屈服强度≥700MPa, 抗拉强度≥785MPa,延伸率≥21%。在该专利中,磷是按照提高耐腐蚀 性的元素来控制的,含量为0.07-0.15%;铜的含量为0.25-0.6%,其下限 和上限分别高于传统工艺的铜含量下限0.2%和上限0.55%。

虽然薄板坯工艺在生产微合金高强耐大气腐蚀钢上存在如上优势,但 传统工艺生产中存在的某些问题,在薄板坯工艺中仍然存在,例如:微合 金元素在热轧过程中也不能保持为固溶体,发生部分析出,导致钢材强度 提高,从而增加轧制载荷,增加能耗和辊耗,使得可经济地和实际地生产 高强耐候钢热轧产品的厚度规格也不可能太薄,厚度为≥1.5mm,见专利 200610123458.1,200610035800.2以及200710031548.2。

薄带连铸技术是冶金及材料研究领域内的一项前沿技术,它的出现为 钢铁工业带来一场革命,它改变了传统治金工业中钢带的生产过程,将连 续铸造、轧制、甚至热处理等整合为一体,使生产的薄带坯经过一道次在 线热轧就一次性形成薄钢带,大大简化了生产工序,缩短了生产周期,其 工艺线长度仅50m左右。设备投资也相应减少,产品成本显著降低。

双辊薄带连铸工艺是薄带连铸工艺的一种主要形式,也是世界上唯一 实现产业化的一种薄带连铸工艺。在双辊薄带连铸过程中,熔融钢水从钢 包经过长水口、中间包和浸入式水口,被引入到一对相对旋转且内部水冷 的结晶辊和侧封板形成的熔池之内,在移动的辊面上形成凝固壳,凝固壳 在结晶辊之间的辊隙处聚集在一起,形成从辊隙向下拉出的铸带。之后通 过摆动导板、夹送辊将铸带输送至辊道,再经过在线热轧机,喷淋冷却, 飞剪直至卷取机,完成薄带连铸产品的生产。

利用薄带连铸技术生产微合金高强耐大气腐蚀钢,迄今为止尚未见报 导,其可能存在的优点如下:

(1)薄带连铸省去了板坯加热、多道次反复热轧等复杂过程,对薄 铸带直接进行一道次在线热轧,生产成本大幅降低。

(2)薄带连铸的铸带厚度通常在1-5mm,通过在线热轧至期望产品 厚度,通常在1-3mm,薄规格产品的生产不需要经过冷轧。

(3)薄带连铸工艺生产低碳微合金钢,所添加的Nb、V、Ti、Mo 等合金元素,在热轧过程中主要以固溶态存在,因此钢带强度相对较低, 从而使单机架热轧压下率可高达30-50%,钢带减薄效率高。

(4)薄带连铸工艺生产低碳微合金钢,高温铸带直接热轧,所添加 的Nb、V、Ti、Mo等合金元素主要以固溶态存在,可提高合金利用率。 从而克服传统工艺板坯冷却过程中发生合金元素析出,板坯再加热时合金 元素回溶不充分而降低合金元素利用率的问题。

但是,耐大气腐蚀钢是一类比较特殊的产品,要求其具有较好的强塑 性匹配,即使是对于较高强度级别的产品,也要求其同时具有较高的延伸 率,否则难以满足成形加工工艺的要求。而利用薄带连铸工艺生产的含有 Nb、V、Ti、Wo等微合金元素的产品,可能由于微合金元素对热轧后奥 氏体再结晶的抑制作用,而保留其铸带粗大奥氏体晶粒的不均匀性,由这 种不均匀的粗大奥氏体相变后所获得的最终产品组织也很不均匀,从而导 致产品的延伸率不高。

国际专利WO 2008137898、WO 2008137899、WO 2008137900,以及 中国专利200880023157.9、200880023167.2、200880023586.6公开了一种 利用薄带连铸连轧工艺生产厚度在0.3-3mm的微合金钢薄带的方法。该方 法采用的化学成分为C<0.25%,Mn 0.20-2.0%,Si 0.05-0.50%,Al<0.01%, 此外,还包含Nb 0.01-0.20%,V 0.01-0.20%,Mo 0.05-0.50%中至少一种。 在热轧压下率为20-40%,卷取温度≤700℃工艺条件下,热轧带的显微组 织为贝氏体+针状铁素体。该专利通过添加合金元素抑制奥氏体热轧后发 生再结晶,保持薄带连铸奥氏体晶粒粗大特征以提高淬透性,从而获得了 贝氏体+针状铁素体的室温组织。在专利中没有给出热轧所采用的温度范 围,但在与这些专利相关的文章中(C.R.Killmore,etc.Development of  Ultra-Thin Cast Strip Products by theProcess.AIS Tech, Indianapolis,Indiana,USA,May 7-10,2007),报导了所采用的热轧温度为 950℃。

利用这种方法生产的薄带连铸低碳微合金钢产品,强度较高,在以上 成分体系范围内,屈服强度可达到650MPa,抗拉强度可达到750MPa,但 最主要的问题是产品的延伸率不高。导致延伸率不高主要原因是:通过薄 带连铸工艺获得的铸带,奥氏体晶粒尺寸粗大,且非常不均匀,小到几十 微米,大到七八百微米甚至毫米量级。而薄带连铸工艺热轧压下率通常不 超过50%,通过形变细化晶粒的效果非常小,如果不通过再结晶细化奥氏 体晶粒,粗大的不均匀奥氏体不会在热轧后得到有效改善,由尺寸粗大的 不均匀奥氏体相变后产生的贝氏体+针状铁素体组织也很不均匀,因此延 伸率不高。

为了改善薄带连铸微合金钢的强塑性匹配,中国专利02825466.X提 出了另外一种利用薄带连铸连轧工艺生产厚度在1-6mm的微合金钢薄带 的方法。该方法所采用的微合金钢成分体系为C 0.02-0.20%,Mn 0.1-1.6%, Si 0.02-2.0%,Al<0.05%,S<0.03%,P<0.1%,Cr 0.01-1.5%,Ni 0.01-0.5%, Mo<0.5%,N 0.003-0.012%,Ti<0.03%,V<0.10%,Nb<0.035%,B <0.005%,其余为Fe和不可避免的杂质。铸带的热轧在1150-(Ar1-100) ℃范围内,对应奥氏体区,奥氏体铁素体两相区,或者铁素体区进行热轧, 热轧压下率为15-80%。该方法在薄带连铸连轧机组后,设计了在线加热 系统,加热温度范围是670-1150℃,目的是使得铸带在不同相区热轧后, 保温一段时间后发生完全再结晶,从而使钢带获得较好的强塑性匹配。

利用这种方法来生产薄带连铸低碳微合金钢产品,的确可以使钢带获 得良好的强塑性匹配,例如成分为C 0.048%,Mn 0.73%,Si 0.28%,Cr 0.07%,Ni 0.07%,Cu 0.18%,Ti 0.01%,Mo 0.02%,S 0.002%,P 0.008%, Al 0.005%,N 0.0065%的钢带屈服强度为260MPa,抗拉强度365MPa,延 伸率为28%。但利用这种方法进行生产,需要在产线设计时增加在线加热 系统,而且由于加热时间的长短,取决于带速和加热炉长度,加热炉必须 有足够长度,才能保证加热均匀性。这不仅增加了投资成本,也会显著增 加薄带连铸连轧产线的占地面积,降低了该产线的优势。

综上所述,利用薄带连铸工艺生产具有较好的强塑性匹配的微合金高 强耐大气腐蚀钢,由于铸带厚度薄,不能通过形变方式细化奥氏体晶粒, 至关重要的是如何通过再结晶细化奥氏体晶粒,使产品获得细小均匀的显 微组织,从而具有较好的强塑性匹配。

发明内容

本发明的目的在于提供一种薄带连铸700MPa级高强耐候钢制造方 法,通过合理的成分和工艺设计,在不增加生产装备情况下,实现铸带热 轧后奥氏体在线再结晶,细化奥氏体晶粒并改善奥氏体晶粒尺寸均匀性, 使产品获得分布更加均匀的尺寸细小的贝氏体加针状铁素体组织,从而同 时具有较高的强度和延伸率。

为达到上述目的,本发明的技术方案是:

一种薄带连铸700MPa级高强耐候钢制造方法,其包括如下步骤:

1)在双辊连铸机中铸造厚度为1-5mm的铸带,其化学成分重量百分比 为:C 0.03-0.1%,Si≤0.4%,Mn 0.75-2.0%,P 0.07-0.22%,S≤0.01%, N≤0.012%,Cu 0.25-0.8%,此外,还包含Nb、V、Ti、Mo中至少 一种,Nb 0.01-0.1%,V 0.01-0.1%,Ti 0.01-0.1%,Mo 0.1-0.5%,其 余为Fe和不可避免的杂质;

2)对铸带进行冷却,冷却速率大于20℃/s;

3)对铸带进行热轧,热轧温度1050-1250℃,压下率20-50%,形变速 率>20s-1;热轧后钢带的厚度为0.5-3.0mm;钢带热轧后发生奥氏体 在线再结晶;

4)对热轧带进行冷却,冷却速率为10-80℃/s;

5)对热轧带进行卷取,卷取温度500-650℃;最终获得钢带的显微组 织主要由均匀的贝氏体和针状铁素体构成。

进一步,步骤1)中,Nb、V、Ti的含量范围均为0.01-0.05%,Mo 的含量范围为0.1-0.25%,以重量百分比计。

步骤2)中,铸带冷却速率大于30℃/s。

步骤3)中,热轧温度为1100-1250℃,或为1150-1250℃。

步骤3)中,热轧压下率为30-50%。

步骤3)中,热轧形变速率>30s-1

步骤4)中,热轧带冷却速率为30-80℃/s。

步骤5)中,卷取温度为500-600℃。

本发明的技术构思如下:

(1)在低碳钢中适量添加微合金元素铌、钒、钛、钼,主要发挥两 方面作用:

其一是发挥其固溶强化作用,提高钢带强度;

其二是通过溶质原子拖曳奥氏体晶界,在一定程度上抑制奥氏体晶粒 长大,从而细化奥氏体晶粒,促进奥氏体再结晶。奥氏体晶粒尺寸越细小, 形变时产生的位错密度越高,形变储存能将越大,从而增大再结晶驱动力 而促进再结晶过程的进行;而且再结晶核心主要在原大角晶界处或其附近 形核的,因此晶粒尺寸越细(晶界面积越大),再结晶形核越容易,从而 促进再结晶过程的进行。

(2)利用薄带连铸工艺中铸带的快速凝固和快速冷却特性,并适当 控制铸带的冷却速率,可有效控制磷、铜的偏析,从而实现在低碳钢中添 加较高含量的提高钢带耐大气腐蚀性能的磷、铜元素。

(3)适当提高在奥氏体区的热轧温度(形变再结晶温度),促进奥 氏体再结晶。再结晶形核率和长大速率均随形变温度的升高而呈指数型关 系的增长(雍岐龙著,微合金钢-物理和力学冶金),温度越高,越容易 发生再结晶。

(4)控制热轧压下率(形变量)在合适的范围内,促进奥氏体再结 晶。形变是发生再结晶的基础,是再结晶的驱动力——形变储存能的来源, 由于必须超过一定的驱动力之后才会发生再结晶,故只有超过一定的形变 量之后才会发生再结晶。形变量越大,形变储存能越大,而形变储存能越 大,再结晶形核和长大速率均越大,即使在较低温度下也能足够迅速地开 始和完成再结晶。而且,形变量增大,还会减小奥氏体再结晶后的晶粒尺 寸,这是因为再结晶形核率随形变储存能的升高而呈指数型关系的增长 (雍岐龙著,微合金钢-物理和力学冶金),因此有利于获得更加细小的 奥氏体相变的产物,对提高钢带的强塑性都是有利的。

(5)控制形变速率在合适的范围内,促进奥氏体再结晶。增大形变 速率,将增大形变储存能,从而增大再结晶驱动力,促进再结晶过程的进 行。

在本发明的化学成分设计中:

C:C是钢中最经济、最基本的强化元素,通过固溶强化和析出强化 来提高钢的强度。C是奥氏体转变过程中析出渗碳体必不可少的元素,因 此C含量的高低在很大程度上决定钢的强度级别,即较高的C含量对应较 高的强度级别。但是,由于C的间隙固溶和析出对钢的塑性和韧性有较大 危害,而且,过高的C含量对焊接性能不利,因此C含量不能过高,钢的 强度通过适当添加合金元素来弥补。故本发明采用的C含量范围是 0.03-0.1%。

Si:Si在钢中起固溶强化作用,且钢中加Si能提高钢质纯净度和脱氧, 但Si含量过高会导致可焊性和焊接热影响区韧性恶化。故本发明采用的 Si含量范围是≤0.4%。

Mn:Mn是价格最便宜的合金元素之一,它能提高钢的淬透性,在钢 中具有相当大的固溶度,通过固溶强化提高钢的强度,同时对钢的塑性和 韧性基本无损害,是在降低C含量情况下提高钢的强度最主要的强化元 素。但Mn含量过高会导致可焊性和焊接热影响区韧性恶化。故本发明采 用的Mn含量范围是0.75-2.0%。

P:P可显著提高钢的耐大气腐蚀性能,并且能显著细化奥氏体晶粒。 但高含量的P容易在晶界偏析,增加钢的冷脆性,使焊接性能变坏,降低 塑性,使冷弯性能变坏。因此目前在传统工艺生产的耐大气腐蚀钢中,P 大多作为杂质元素来控制,含量很低。

在薄带连铸工艺中,铸带的凝固和冷却速率极快,可有效抑制P的偏 析,从而可有效避免P的劣势,充分发挥P的优势,从而提高钢的耐大气 腐蚀性能,并通过细化奥氏体晶粒促进奥氏体再结晶。故在本发明中,采 用较传统工艺生产的耐大气腐蚀钢更高的P含量,范围是0.07-0.22%。

S:在通常情况下S也是钢中有害元素,使钢产生热脆性,降低钢的 延展性和韧性,在轧制时造成裂纹。S还会降低焊接性能和耐腐蚀性。故 在本发明中,S是作为杂质元素来控制,其含量范围是≤0.01%。

Cu:Cu是提高钢的耐大气腐蚀性能的关键元素,与P配合使用效果 更为显著。Cu还能发挥固溶强化作用提高钢的强度,而对焊接性能没有 不利的影响。但Cu是易偏析元素,容易引起钢材热加工时的热脆。因此 目前在传统工艺生产的耐大气腐蚀钢中,Cu含量一般不超过0.6%。

在薄带连铸工艺中,铸带的凝固和冷却速率极快,可有效抑制Cu的 偏析,从而可有效避免Cu的劣势,充分发挥Cu的优势。故在本发明中, 采用较传统工艺生产的耐大气腐蚀钢更高的C含量,范围是0.25-0.8%。

Nb:在常用的Nb、V、Ti、Mo四种微合金元素中,Nb是最强的抑 制热轧后奥氏体再结晶的合金元素。在传统控制轧制用的微合金钢中,一 般都添加Nb,一是起到强化的作用,二是抑制热轧后奥氏体发生再结晶, 实现形变细化奥氏体晶粒的目的。Nb可通过溶质原子拖曳机制,以及所 析出的碳氮化铌第二相质点钉扎机制而有效地阻止大角晶界及亚晶界的 迁移,从而显著地阻止再结晶过程,其中第二相质点阻止再结晶的作用更 为显著。

在薄带连铸工艺中,由于其独特的钢带快速凝固和快速冷却特性,可 以使添加的合金元素Nb主要以固溶态存在于钢带中,即使钢带冷却到室 温,也几乎观察不到Nb的析出。因此,尽管Nb元素可有效地抑制奥氏 体再结晶,但仅靠溶质原子而不发挥第二相质点的作用来阻止再结晶,在 很多情况下是非常困难的,例如在形变温度较高、形变量较大的情况下, 即使添加Nb元素,奥氏体也会发生再结晶。

另一方面,固溶于钢中的Nb元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, Nb对于促进奥氏体热轧后再结晶是有利的。

本发明既要发挥Nb的固溶强化作用提高钢的强度,又要尽量降低Nb 对再结晶的抑制作用,设计其含量范围是0.01-0.1%。优选的,Nb的含量 范围是0.01-0.05%,钢带可具有更优的强度和塑性配比。

V:在常用的Nb、V、Ti、Mo四种微合金元素中,V对奥氏体再结 晶的抑制作用最弱。在再结晶控轧钢中,通常是添加V,既可以起到强化 作用,同时对再结晶的抑制作用相对来说又比较小,实现再结晶细化奥氏 体晶粒的目的。

在薄带连铸工艺中,V也主要以固溶态存在于钢带中,即使钢带冷却 到室温,也几乎观察不到V的析出。因此,V元素对奥氏体再结晶的抑制 作用非常有限。在既要发挥合金元素的固溶强化作用提高钢的强度,又要 降低合金元素对再结晶抑制作用的情况下,V是比较理想的合金元素,最 为符合本发明的构思。

另一方面,固溶于钢中的V元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, V对于促进奥氏体热轧后再结晶是有利的。

本发明采用V的含量范围是0.01-0.1%。优选的,V的含量范围是 0.01-0.05%,钢带可具有更优的强度和塑性配比。

Ti:在常用的Nb、V、Ti、Mo四种微合金元素中,Ti对奥氏体再结 晶的抑制作用次于Nb,但高于Mo、V。从这一点上讲,Ti对促进奥氏体 再结晶是不利的。但Ti有一个突出的优点,它的固溶度很低,它可以在 高温下形成相当稳定的尺寸约为10nm左右的第二相质点TiN,可阻止均 热时奥氏体晶粒粗化,由此起到促进再结晶的作用。因此,在再结晶控轧 钢中,通常添加微量Ti,细化奥氏体晶粒,促进奥氏体再结晶。

在薄带连铸工艺中,Ti主要以固溶态存在于热态钢带中,如果钢带冷 却到室温,可能观察到少许Ti的析出。因此,Ti元素对奥氏体再结晶的 抑制作用是有限的。

另一方面,固溶于钢中的Ti元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, 对于促进奥氏体热轧后再结晶是有利的。

本发明既要发挥Ti的强化作用提高钢的强度,又要尽量降低Ti对再 结晶的抑制作用,设计其含量范围是0.01-0.1%。优选的,Ti的含量范围 是0.01-0.05%,钢带可具有更优的强度和塑性配比。

Mo:在常用的Nb、V、Ti、Mo四种微合金元素中,Mo对奥氏体再 结晶的抑制作用相对来说也是较弱的,仅高于V。

在薄带连铸工艺中,Mo也主要以固溶态存在于钢带中,即使钢带冷 却到室温,也几乎观察不到Mo的析出。因此,Mo元素对奥氏体再结晶 的抑制作用非常有限。

另一方面,固溶于钢中的Mo元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, 对于促进奥氏体再结晶是有利的。

本发明采用Mo的含量范围是0.1-0.5%。优选的,Mo的含量范围是 0.1-0.25%,钢带可具有更优的强度和塑性配比。

N:与C元素类似,N元素可通过间隙固溶提高钢的强度,但是,N 的间隙固溶对钢的塑性和韧性有较大危害,因此N含量不能过高。本发明 采用的N含量范围是≤0.012%。

在本发明制造工艺中:

薄带连铸,即钢水被引入到一对相对旋转且内部水冷的结晶辊和侧封 板形成的熔池之内,经过快速凝固后直接浇铸出厚度为1-5mm的铸带。

铸带冷却,铸带从结晶辊连铸出来后,经过密闭室,在密闭室内进行 冷却。为了快速降低铸带温度,以防止奥氏体晶粒在高温下长大过快,更 重要的是控制P、Cu的偏析,控制铸带的冷却速率大于20℃/s,优选的冷 却速率是大于30℃/s。铸带冷却采用气冷方式,冷却气体的压力、流量和 气喷嘴位置可以调节和控制。冷却气体可以是氩气、氮气、氦气等惰性气 体,或者是几种气体的混和气体。通过控制冷却气体的类型、压力、流量, 以及喷嘴到铸带之间的距离等,实现对铸带冷却速率的控制。

铸带在线热轧,控制轧制温度为1050-1250℃,目的是实现热轧后奥 氏体发生完全再结晶,细化奥氏体晶粒。在本发明的化学成分设计中,添 加了Nb、V、Ti、Mo微合金元素,如前所述,合金元素的添加对奥氏体 再结晶有一定的抑制作用,尽管在薄带连铸工艺下这种抑制作用会降低, 但在低于1050℃下进行热轧,很难发生奥氏体完全再结晶。而在高于 1250℃下进行热轧,由于带钢强度低,使得热轧过程很难控制。因此本发 明选择1050-1250℃轧制温度范围。优选的,热轧温度范围是1100-1250℃, 或者是1150-1250℃。控制热轧压下率为20-50%,热轧压下量增加会促进 奥氏体再结晶,细化奥氏体晶粒,优选的热轧压下率范围是30-50%。控 制热轧形变速率>20s-1,形变速率增加会促进奥氏体再结晶,优选的形变 速率范围是>30s-1。热轧后钢带的厚度范围是0.5-3.0mm。

热轧带冷却,采用气雾冷却、层流冷却或者喷淋冷却等方式对热轧带 进行冷却。冷却水的流量、流速,以及出水口位置等可以调节,从而实现 对热轧带冷却速率的控制。控制热轧带的冷却速率为10-80℃/s,冷却热轧 带到所需要的卷取温度。冷却速率是影响奥氏体相变实际开始温度的重要 因素之一,冷却速率越大,奥氏体相变实际开始温度越低,这样相变后所 获得的组织晶粒尺寸也就越细小,对提高钢带的强韧性都是有利的,优选 的冷却速率范围是30-80℃/s。

热轧带卷取,控制热轧带的卷取温度为500-650℃,以使热轧带具有 贝氏体加针状铁素体的组织特征。优选的,卷取温度范围是500-600℃。

本发明与前述现有专利的最根本不同在于,采用不同的成分范围和工 艺技术路线,控制实现热轧后奥氏体在线再结晶,生产出具有尺寸细小的、 均匀的贝氏体加针状铁素体组织的耐候钢带,从而具有良好的强度和延伸 率匹配。

与现有利用传统工艺和薄板坯工艺制造高强耐大气腐蚀钢的专利相 比,本发明的优点在于:

(1)本发明通过采用薄带连铸工艺,发挥其流程短、能耗低、效率 高、工艺简单等特点,大幅度降低0.5-3mm厚度的微合金高强薄规格耐大 气腐蚀钢的生产成本。

(2)本发明通过采用薄带连铸工艺,并配合铸带冷却速率控制,有 效抑制P、Cu的偏析,将微合金高强耐大气腐蚀钢Cu含量的上限由传统 工艺的0.55%和薄板坯工艺的0.6%提高到0.8%,将P含量的上限由传统 工艺的0.02%和薄板坯工艺的0.15%提高到0.22%。

(3)本发明通过提高P、Cu含量来提高钢的耐大气腐蚀性能,没有 添加贵金属Cr、Ni,进一步降低生产成本。

与现有利用薄带连铸工艺生产微合金高强钢的中国专利 200880023157.9、200880023167.2、200880023586.6相比,本发明的不同 之处在于:中国专利200880023157.9、200880023167.2、200880023586.6 通过添加微合金元素抑制奥氏体热轧后的再结晶,使钢带获得贝氏体加针 状铁素体组织,由尺寸粗大的不均匀奥氏体相变后产生的贝氏体+针状铁 素体组织也很不均匀,因此延伸率较低。本发明通过控制微合金元素添加 量、热轧温度、热轧压下率、热轧形变速率,实现热轧后奥氏体在线再结 晶,使钢带获得均匀的贝氏体加针状铁素体组织,具有良好的强塑性匹配。 另外,本发明化学成分设计中含有P、Cu,以提高钢的耐大气腐蚀性能, 实质上是对应不同钢种的生产。

与现有利用薄带连铸工艺生产微合金钢的中国专利02825466.X相比, 本发明的不同之处在于:中国专利02825466.X控制热轧后奥氏体发生再 结晶是通过增加在线加热系统实现的。本发明控制热轧后奥氏体发生再结 晶是通过控制微合金元素添加量、热轧温度、热轧压下率、热轧形变速率 实现的。另外,本发明化学成分设计中含有P、Cu,实质上是对应不同钢 种的生产。

本发明的有益效果:

本发明通过薄带连铸生产过程中合理的成分设计,合理的铸带冷却速 率控制,合理的热轧温度、热轧压下率、热轧形变速率设计,在不增加生 产装备情况下,控制实现含有微合金元素的铸带热轧后奥氏体在线再结 晶,生产出具有均匀的贝氏体加针状铁素体组织的耐大气腐蚀钢带,具有 良好的强度和延伸率匹配。

附图说明

图1为薄带连铸工艺过程示意图。

具体实施方式

参见图1,本发明的薄带连铸工艺过程,大包1中的钢水经过长水口 2、中间包3和浸入式水口4,浇入到由两个相对旋转的水冷结晶辊5a、 5b和侧封板6a、6b形成的熔池7内,经过水冷结晶辊的冷却形成1-5mm 铸带11,铸带经过在密闭室10内的二次冷却装置8控制其冷却速率,通 过摆动导板9、夹送辊12将铸带送至热轧机13,热轧后形成0.5-3mm的 热轧带,再经三次冷却装置14,之后热轧带进入卷取机15。将钢卷从卷 取机上取下后,自然冷却至室温。

本发明实施例的钢水均采用电炉冶炼得到,具体化学成分如表1所示。 薄带连铸后得到的铸带厚度,铸带冷却速率,热轧温度,热轧压下率,热 轧形变速率,热轧带厚度,热轧带冷却速率,卷取温度等工艺参数,以及 热轧带冷却到室温后的拉伸性能和弯曲性能见表2。

从表2可以看出,本发明钢带的屈服强度≥700MPa,抗拉强度≥ 780MPa,延伸率≥18%,180°弯曲性能合格,具有优良的强塑性匹配。

表1实施例的钢水化学成分(wt.%)

表2实施例的工艺参数及产品性能

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号