首页> 中国专利> 最大限度提高催化剂利用率的劣质重油催化剂组合加氢处理工艺

最大限度提高催化剂利用率的劣质重油催化剂组合加氢处理工艺

摘要

本发明提供一种最大限度提高催化剂利用率的劣质重油加氢处理工艺及催化剂级配组合,含有两个上流式脱铁脱钙反应器,一个上流式脱金属反应器,一个固定床脱硫反应器,一个固定床脱氮反应器,本发明通过采用简单而灵活的加氢处理流程,最终达到既提高催化剂加氢脱杂质能力,又保证最大限度提高装置运行周期这一目的,如果恰当地选择有效的加氢催化剂,效果会更好。本发明特别适于处理高硫、高金属含量、高沥青质的渣油,可实现装置的长周期运转。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-09-23

    授权

    授权

  • 2013-10-16

    实质审查的生效 IPC(主分类):C10G65/04 申请日:20120301

    实质审查的生效

  • 2013-09-11

    公开

    公开

说明书

技术领域

本发明方法可用于加氢领域,尤其适用于高金属、高沥青质含量的重质馏分油和渣油 的加氢精制和加氢处理。本发明方法具有不仅具有较高的脱金属、脱硫、脱氮和脱沥青质 活性,而且具有较长的装置运行周期。

背景技术

目前,国内外油品市场对轻、中质油品的需求仍将呈持续上升的趋势,对燃料油等重 质油品的需求则呈下降趋势。此外,由于环境保护的压力日益增加,各国普遍提高了石油 产品尤其是车用汽柴油产品的质量标准要求。在上述市场趋势下,既能以较经济合理的代 价实现重油轻质化、又能使所得到的产品满足不断苛刻的汽柴油产品规格的炼油技术成了 国内外炼油技术开发商重点开发的技术之一。

催化加氢是最有效的重质油原料预处理技术。通过加氢,显著降低这些原料中的金属、 硫、氮、沥青质含量,提高氢碳比,进而为催化裂化和延迟焦化等装置提供优良的原料。 目前主要的加氢工艺主要有沸腾床、悬浮床、移动床和固定床工艺,其中悬浮床和移动床 工艺还很不成熟,并且成本较高。沸腾床投资较高,并且操作难度较大。固定床因成本低、 操作简单并且安全性小,技术成熟,因而发展较快。

但在固定床催化加氢处理中,如果原料黏度较大、金属杂质或沥青质较高,在加氢过 程中,金属和焦炭会逐渐沉积在催化剂上,容易使催化剂快速失活,床层堵塞,压力升高, 使装置操作频繁停工。

加氢处理这类原料必须保证尽可能长的循环操作,无需停止设备。许多研究者提出了 多种解决方法。

CN1322097C公开了一种采用可置换反应器和可短路反应器加氢处理重烃馏分的方 法。先在第一加氢脱金属段中,然后在第二加氢脱硫段中加氢处理,其中加氢脱金属段前 至少有一个保护区。所述的加氢处理方法包括下述步骤:a)一个步骤,其中使用保护区; b)一个步骤,在这个步骤期间该保护区短路,并且再生和/或更换该区段所含的催化剂; c)一个步骤,在这个步骤期间再接已再生和/或更换催化剂的保护区;d)一个步骤,其 中至少一个加氢脱金属段和/或加氢脱硫段的反应器可以短路,并且再生和/或更换该区段 所含的催化剂。但是这样的方法需要更高的初始投资。

CN1349554公开了一种带层状催化剂床层的上流式反应器系统加氢处理重质原料的 方法。用至少两个不同加氢活性的催化剂的上流式固定床反应器加氢处理金属、硫和含碳 残质污染的重质原料。但该方法运行周期短,一般不超过1年。

CN1144860公开了一种渣油加氢处理的方法。在重渣油加氢反应系统中的第一个反 应器增设一个或多个进料口,同时改变原有的催化剂级配,当一反催化剂床层压降为装置 设计最大压降的0.4-0.8倍时,依次改用下一个进料口,同时原有进料口可进循环油或循 环油与原料油的混合物。该工艺能有效地防止床层压降和延长渣油加氢催化剂的使用寿 命,而且可以增加装置的处理能力。

CN00110714.3公开了一种渣油处理方法。通过在重渣油加氢反应系统之前,采用一 段吸附过滤剂床层或一段吸附过滤剂床层和一段吸附过滤催化剂床层同时使用,不仅可以 最大程度地脱除原料油中携带的悬浮颗粒,而且还可以脱除掉原油中的环烷酸铁生成的硫 化亚铁及大部分易生焦的物质,最大程度减少渣油加氢反应系统反应器的结垢,减少装置 运转周期内的因结垢造成的开停工次数。

发明内容

本发明的目的是提供一种劣质重油或渣油加氢处理方法,通过采用独特的加氢处理流 程,并恰当地选择有效的加氢催化剂,最终达到既提高催化剂加氢脱杂质能力,又保证装 置具有较长的运行周期这一目的。

一种劣质重油加氢处理工艺,劣质重油或/和渣油原料与氢气依次进入脱铁脱钙反应 器,固定床脱金属反应器,固定床脱硫反应器,固定床脱氮反应器进行处理,其特征在于 在物料总管上接有两个支管,两个支管上均设有单向阀,阀后分别与一个上流式脱铁脱钙 反应器相连,在上流式脱铁脱钙反应器的出口管线单向阀前与另一上流式脱铁脱钙反应器 进口管线单向阀后连接有一条管线,使得物料得以从一个上流式脱铁脱钙反应器的出口导 入另一个上流式脱铁脱钙反应器的进口,管线上安有单向阀;两个上流式脱铁脱钙反应器 的出口管线合并成一条管线后从底部与上流式脱金属反应器连接,再依次与固定床脱硫反 应器、固定床脱氮反应器相连,在上流式脱金属反应器的进口管线和出口管线上均安有三 向阀,两个三向阀之间有一条管线相连接;各反应器的工艺条件为:氢压5.0MPa~20.0 MPa,温度300℃~450℃,液时体积空速0.2h-1~3h-1,氢油体积比300~2000催化剂 的组合采用方式为:上流式脱铁脱钙反应器装填加氢脱铁脱钙催化剂,脱金属反应器床层 装填加氢脱金属催化剂,脱硫反应器床层装填加氢脱硫催化剂,脱氮反应器床层装填加氢 脱氮催化剂;从催化剂颗粒中心到外表面,加氢脱铁脱钙催化剂的活性金属组分呈“蛋黄” 分布;加氢脱金属催化剂和加氢脱硫催化剂的活性金属组分浓度梯度减少分布,加氢脱氮 催化剂的活性金属组分梯度增加分布。

重质油和/或渣油原料首先进入两个上流式脱铁脱钙反应器,反应器内装填加氢脱铁 脱钙催化剂,在这里进行脱铁脱钙反应;之后其反应生成物有两条运行方式:一是不经分 离直接进入上流式脱金属反应器,在脱金属催化剂存在下进行加氢脱金属(Ni、V)反应, 其反应生成物不经分离,直接进入固定床脱硫反应器,在催化剂存在下进行加氢脱硫反应; 二是直接进入脱硫反应器,在催化剂存在下进行加氢脱硫反应。其脱硫反应器反应生成物 不经分离,直接进入固定床脱氮反应器。

脱铁脱钙装置运行过程步骤如下:

(1)在反应初期,两个脱铁脱钙反应器一起使用,重油或渣油原料先进入其中一个 反应器(以A表示),再进入另一个反应器(以B表示)进行脱铁脱钙反应。

(2)反应一段时间后,A反应器催化剂活性接近中后期,这时可以改变原料流向, 原料先进B反应器再进A反应器。

(3)在A反应器中脱铁脱钙催化剂处于失活阶段,关闭A反应器进料阀,并用再生 和/或用新鲜催化剂替换反应器的催化剂。此时物料只进B反应器。

(4)A完成换剂后,物料先进B反应器,再进已换剂的反应器A。

(5)在B反应器中脱铁脱钙催化剂处于失活阶段,关闭B反应器进料阀,并用再生 和/或用新鲜催化剂替换反应器的催化剂。此时物料只进A反应器。

(6)B反应器完成换剂后,继续重复步骤(1)-步骤(5)。

对于脱金属反应器而言,在运行过程中,尤其在脱金属催化剂活性失活阶段,物料自 反应器出来直接进入脱硫反应器。同时用再生和/或用新鲜催化剂替换反应器的脱金属催 化剂。完成催化剂替换后,物料自反应器出来再依次进入脱金属反应器、脱硫反应器和脱 氮反应器。

本发明所提供的方法该方法可以处理高金属含量、高硫、高氮、高沥青质的渣油,并 能够有效减缓反应器压降的上升速度,从而实现装置的长周期运转。

本发明的上流式反应器的物流方向是由下向上流动通过催化剂床层,床层中的催化剂 略微膨胀。重质油或渣油原料和氢气混合后从上流式反应器底部进料,使整个催化剂床层 产生轻微的膨胀,从而减缓催化剂床层的压力降的增长速度,延长装置的运转周期。同沸 腾床、移动床和悬浮床相比,上流式反应器具有投资低、操作简单等特点。

本发明还提供一种能够有效发挥各类催化剂作用,提高催化剂加氢脱金属(HDM)、加 氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱残炭活性和稳定性的重馏分油和渣油加氢催化剂 级配组合。

本发明采用的催化剂的级配组合采用普通的装填方式,加氢脱铁脱钙催化剂、加氢脱 金属催化剂、加氢脱硫催化剂和加氢脱氮催化剂可以由一种或多种催化剂组成;催化剂级 配组合中,按重量含量计算,加氢脱铁脱钙催化剂占10~55%,最好为10~30%,加氢脱 金属催化剂占5~55%,最好为15~40%;加氢脱硫催化剂占5~55%,最好为20~40%;加 氢脱氮催化剂占5~55%,最好为10~50%。

本发明中4个类别反应器中可以分别装填一种或一种以上催化剂,沿物流方向,最 好孔径逐渐减小,粒度逐渐减小,孔隙率逐渐减小。

加氢脱铁脱钙催化剂、加氢脱金属催化剂、加氢脱硫催化剂和加氢脱氮催化剂,从 左至右,最好催化剂孔径逐渐减小,粒度逐渐减小,孔隙率逐渐减小。

加氢脱铁脱钙催化剂、加氢脱金属催化剂、加氢脱硫催化剂和/或加氢脱氮催化剂, 一般以多孔无机氧化物如氧化铝为载体,第VIB族金属(如W或/和Mo)和/或VIII族金属 (如Co或/和Ni)氧化物为活性组分,催化剂的物性、组成最好是:

1)以Al2O3或含有K2O、MgO、SiO2、TiO2、ZrO2的Al2O3作为载体;

2)孔容为0.1~3.0mL/g,最好为0.3~1.3mL/g;

3)比表面为20~400m2/g,最好为100~240m2/g;

4)催化剂以对应金属氧化物质量计(以下同),含有1.0~20.0%,最好为3.0~16 %的第VIB族金属(如MoO3和/或WO3),和/或0.5~8.0%,最好为1.0~5.5%的VIII族 金属(如CoO和/或NiO)。

加氢脱铁脱钙催化剂推荐的制备过程是:

采用不饱和浸渍(浸渍溶液体积最好为饱和浸渍体积的1/3左右)结合快速干燥的 方法,制备加氢脱铁脱钙催化剂。以Al2O3或含有SiO2、TiO2、ZrO2的Al2O3作为载体, 将VIB和/或VIII化合物(如钼和/或钨化合物和/或镍和/或钴化合物)和去离子水或氨水 混合制成浸渍溶液,浸渍溶液体积约为饱和浸渍体积的1/3左右,采用喷浸的方法,溶 液以雾化状态喷浸于载体上,然后在80~180℃下快速干燥5-30分钟,然后在300~650 ℃,最好在400~550℃下焙烧2~6小时制得催化剂。所得到的催化剂,要求催化剂 活性金属组分分布浓度呈“蛋黄”分布。

加氢脱金属催化剂和加氢脱硫催化剂推荐的制备过程是:

以Al2O3或含有SiO2、TiO2、ZrO2的Al2O3作为载体,将VIB和/或VIII化合物(如 钼和/或钨化合物和/或镍和/或钴化合物)和去离子水或氨水混合制成浸渍溶液,采用饱 和喷浸的方法,溶液以雾化状态喷浸于载体上,然后在80~150℃下干燥1~8小时,然 后在300~650℃,最好在400~550℃下焙烧2~6小时制得催化剂。所得到的催化 剂,要求催化剂活性金属组分分布浓度自催化剂颗粒中心到外表面呈由高到低的梯度分 布,可以是一个活性金属也可以是多个活性金属组分分布浓度呈以上情形的梯度分布。

催化剂活性金属组分分布浓度自催化剂颗粒中心到外表面呈由高到低的梯度分布可 以通过配制较浓的浸渍溶液,在载体喷浸过程中,逐步添加去离子水或氨水稀释浸渍溶液 的方法饱和喷渍载体获得;或通过配制至少两种不同浓度的浸渍溶液,按浸渍溶液浓度从 高到低顺序喷渍在载体上获得。

加氢脱氮催化剂推荐的制备过程是:

以Al2O3或含有SiO2、TiO2、ZrO2的Al2O3作为载体,将VIB和/或VIII族金属化合 物,优选钼和/或钨和/或镍和/或钴化合物和去离子水或氨水混合制成浸渍溶液,采用饱 和喷浸的方法,溶液以雾化状态喷浸于载体上,然后在80~150℃下干燥1~8小时,在 300~650℃,最好在400~550℃下焙烧2~6小时制得催化剂。所得到的催化剂,要 求活性金属组分分布浓度自催化剂颗粒中心到外表面呈由低到高的梯度分布,可以是一个 活性金属也可以是多个活性金属浓度呈以上情形的梯度分布。

催化剂活性金属组分分布浓度自催化剂颗粒中心到外表面呈由低到高的梯度分布可 以通过配制较稀的VIB和/或VIII族金属溶液或去离子水,喷浸过程中,逐步添加较浓的 浸渍溶液饱和喷浸载体获得,或通过配制不同浓度的浸渍溶液,按浸渍溶液浓度从低到高 顺序喷浸在载体上获得。

加氢脱铁脱钙催化剂颗粒中,金属组分浓度呈“蛋黄”分布,催化剂颗粒外表面与中 心处活性金属质量含量之比为0~0.05,最好为0.005~0.02,0.66R(颗粒中心为初始 点,R为催化剂颗粒半径)处与中心处活性金属质量含量之比为0.03~0.2,最好为0.05~ 0.1,0.33R(R为催化剂颗粒半径)处与中心处活性金属质量含量之比为0.5~0.95,最 好为0.75~0.95。

加氢脱金属催化剂和加氢脱硫催化剂颗粒中,金属组分浓度分布从颗粒中心到外表面 呈梯度减少分布,催化剂颗粒外表面与中心处活性金属质量含量之比为0.05~0.70,最 好为0.15~0.45,0.66R(颗粒中心为初始点,R为催化剂颗粒半径)处与中心处活性金 属质量含量之比为0.2~0.8,最好为0.35~0.6,0.33R(R为催化剂颗粒半径)处与中心 处活性金属质量含量之比为0.4~0.9,最好为0.5~0.8。

加氢脱氮催化剂颗粒中,活性金属组分浓度从颗粒中心到表面逐渐增加。催化剂颗粒 中心与外表面活性金属质量含量之比为0.05~0.70,最好为0.15~0.45,0.33R(中心 为初始点,R为催化剂颗粒半径)处与外表面活性金属质量含量之比为0.2~0.8,最好为 0.3~0.6,0.66R(R为催化剂颗粒半径)处与外表面活性金属质量含量之比为0.4~0.9, 最好为0.5~0.8。

本发明催化剂制备方法中使用的载体可以是滴球成型、滚球造粒、挤压成型、压片成 型等,以滴球成型和挤压成型为最好。催化剂形状可以是球形、条形(包括圆柱形、三叶 形、四叶形等)、片形。以球形和条形为最好。

本发明的重油加氢处理工艺,各反应器可以采用任何适合本领域的加氢处理工艺条 件,一般的工艺条件如下:氢压5.0MPa~20.0MPa,较好的是8.0MPa~18.0MPa, 最好的是10.0MPa~16.0MPa;温度300℃~450℃,较好的是360℃~440℃,最好的 是360℃~430℃;液时体积空速0.2h-1~3h-1,较好的是0.2h-1~2h-1,最好的是0.2h-1~ 1h-1;氢油体积比300~2000,较好的是400~1500,最好的是500~1000。

由于本发明中脱铁脱钙反应器、脱金属反应器选择了上流式反应器,上流式反应器的 物流方向是由下向上流动,反应器内液相连续,床层中的催化剂略微膨胀。同沸腾床、移 动床和悬浮床相比,上流式反应器具有投资低、操作简单等特点。本发明的重质油、渣油 原料和氢气混合后从上流式脱铁脱钙反应器的底部进料,使整个催化剂床层产生轻微的膨 胀,从而减缓催化剂床层的压力降的增长速度,采用的工艺流程可以避免脱铁脱钙剂和脱 金属失活时,脱硫剂和脱氮剂活性还有相当大的潜力不能有效发挥的情况发生。同时推荐 在脱铁脱钙反应器、脱金属反应器、脱硫反应器和脱氮反应器中选择特定催化剂,特别适 于处理高硫、高金属含量、高沥青质的渣油,实现装置的长周期运转。

本发明通过采用简单而灵活的加氢处理流程,最终达到既提高催化剂加氢脱杂质能 力,又保证最大限度提高装置运行周期这一目的,如果恰当地选择有效的加氢催化剂,效 果会更好。

附图说明

图1本发明的劣质重油、渣油加氢处理工艺流程示意图。

图2对比例3中的劣质重油、渣油加氢处理工艺流程示意图。

图3在本发明中可以使用的加氢脱金属催化剂和加氢脱硫催化剂颗粒中心到外表面 的活性金属浓度分布图。

图4在本发明中可以使用的加氢脱金属催化剂和加氢脱硫催化剂颗粒中心到外表面 的活性金属浓度分布。

图5在本发明中可以使用的加氢脱氮催化剂颗粒中心到外表面的活性金属浓度分布。

图6在本发明中可以使用的加氢脱氮催化剂颗粒中心到外表面的活性金属浓度分布。

具体实施方式

下面结合附图对本发明所提高的方法予以进一步的说明,但不因此而限制本发明。

图1为劣质重油、渣油的加氢处理方法示意图。

将重油或渣油原料一起进入加氢处理装置的上流式反应器R-1A和/或R-1B的底部, 与上流式反应器催化剂接触进行脱铁脱钙反应,其反应生成物有两条运行方式:一是不经 分离直接进入上流式反应器R-2的底部,在催化剂存在下进行加氢脱金属(Ni、V)反应, 其反应生成物不经分离,直接进入固定床脱硫反应器R-3,在催化剂存在下进行加氢脱硫 反应;二是直接进入脱硫反应器,在催化剂存在下进行加氢脱硫反应。其脱硫反应器反应 生成物不经分离,直接进入固定床脱氮反应器R-4。

脱铁脱钙装置运行过程步骤如下:

(1)在反应初期,R-1A和R-1B反应器一起使用,重油或渣油原料先进入R-1A,再进 入R-1B进行脱铁脱钙反应。

(2)反应一段时间后,R-1A反应器催化剂活性接近中后期,这时可以改变原料流向, 原料先进R-1B反应器再进R-1A反应器。

(3)在R-1A反应器中脱铁脱钙催化剂处于失活阶段,关闭R-1A反应器进料阀,并 用再生和/或用新鲜催化剂替换反应器的催化剂。此时物料只进R-1B反应器。

(4)R-1A完成换剂后,物料先进R-1B反应器,再进已换剂的反应器R-1A。

(5)在R-1B反应器中脱铁脱钙催化剂处于失活阶段,关闭R-1B反应器进料阀,并 用再生和/或用新鲜催化剂替换反应器的催化剂。此时物料只进R-1A反应器。

(6)继续重复步骤(1)-步骤(5)。

对于脱金属反应器R-2而言,在运行过程中,尤其在脱金属催化剂活性末期,物料自 脱铁脱钙反应器出来可以直接进入脱硫反应器R-3。并用再生和/或用新鲜催化剂替换反 应器的脱金属催化剂。完成催化剂替换后,物料自脱铁脱钙反应器出来再依次进入脱金属 反应器R-2、脱硫反应器R-3和脱氮反应器R-4。

催化剂的活性组分可以通过电子能谱分析(EDX)分析得到。本发明提供的加氢脱金 属催化剂和脱硫催化剂的活性组分分布如图3和图4所示。其中,从脱金属催化剂和脱硫 催化剂颗粒中心到外表面,活性金属组分浓度可以以图3形式分布,也可以以图4形式分 布。从图4可以发现:从催化剂颗粒中心到外表面,浓度分布出现了一个平台,两个台阶。 这里需要说明的是,浓度分布可以以一个或多个台阶形式存在。但总的趋势是:自催化剂 颗粒中心到外表面,活性金属组分浓度呈梯度减少分布。

脱氮反应器所用的脱氮催化剂颗粒中心到外表面的活性金属浓度分布如图5和图6 所示。其中,由脱氮催化剂颗粒的中心至外表面,在脱氮催化剂颗粒中,活性金属组分浓 度可以以图5形式分布,也可以以图6形式分布;从图6可以发现:从催化剂颗粒中心到 外表面,浓度分布出现了三个平台,两个台阶。这里需要说明的是,浓度分布可以以一个 或多个台阶形式存在。但总的趋势是:自脱氮催化剂颗粒中心到外表面,活性金属组分浓 度呈梯度增加分布。

实施例1(所述浓度%均为质量%)

实施例1使用图1所示的加氢工艺组合,包括5个反应器,其中包括2个上流式脱 铁脱钙反应器、1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催 化剂级配组装方案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫 剂和加氢脱氮剂,加入比例分别为20%、25%、20%、35%。

催化剂级配组合的制备过程如下:

上流式脱铁脱钙反应器装填1种加氢脱铁脱钙剂,编号为DFC-1#,催化剂的制备方 法如下:

本实施例以空心齿轮形Al2O3作载体,采用不饱和喷浸结合快速干燥的方法制备活性 金属组分为Mo的催化剂。

称取150g,吸水率为1.10mL/g的Al2O3载体,喷浸50mL含4.3g钼酸铵(含 MoO3 82%,北京化学试剂公司)的浸渍溶液,5分钟喷浸完。在喷浸设备中均化10 分钟后,在150℃下干燥20分钟,再在500℃空气中焙烧3小时,制得催化剂DFC-1#。 其物性数据如下:MoO3含量为2.29%,比表面积78m2/g,孔体积0.83mL/g,堆比重 0.44g/mL,孔隙率为51%,催化剂粒径为13mm。

上流式脱金属反应器自上至下依次装填2种加氢脱金属催化剂,编号分别为DM-1# 和DM-2#,添加比例(重量)为1∶1。催化剂制备方法如下:

以含2.0%Z rO2的三叶草Al2O3作载体,采用饱和喷浸方法制备活性金属组分为Mo、 Ni的催化剂DM-1#。

称取150g,吸水率为1.10mL/g含2.5%K2O的Al2O3载体,喷浸82.5mL含3.2g 钼酸铵(含MoO3 82%)和6.80g硝酸镍(含NiO 25.2%)的氨水溶液,在喷渍过程 中匀速滴入82.5mL含3.2g钼酸铵(含MoO3 82%)的氨水溶液于上述溶液中并搅拌, 边滴入边喷浸,10分钟喷浸完。在喷浸设备中均化10分钟后,在60℃下干燥2小时, 取出后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为DM-1#。 DM-1#的物性数据如下:MoO3含量为3.1%,NiO质量含量为1.1%,比表面积98m2/g, 孔体积0.82mL/g,堆比重0.49g/m,孔隙率为47%,粒径为6mm。

以含1.5%TiO2的Al2O3作载体,采用饱和喷浸的方法制备活性金属组分为Mo、Co 的催化剂DM-2#。

称取150g,吸水率为1.10mL/g含1.5%MgO的Al2O3载体,喷浸50mL含9.3g 钼酸铵(含MoO382%)的水溶液,在喷渍过程中度匀速滴入115mL去离子水于浸溶 液中并搅拌均匀,边滴入边喷浸,15分钟喷浸完。在喷浸设备中均化10分钟后,在120 ℃下干燥5小时,再在500℃空气中焙烧4小时,制得催化剂。编号为DM-2#。DM-2# 的物性数据如下:MoO3含量为4.5%,比表面积118m2/g,孔体积0.80mL/g,堆比重 0.52g/mL,孔隙率为45%,粒径为3mm。

固定床脱硫反应器自上至下依次装填的催化剂编号为DS-1#和DS-2#,添加比例(重 量)为1∶1。

称取150g,吸水率为1.10mL/g的Al2O3载体,按饱和吸收溶液量喷浸82.5mL含 22.6g钼酸铵(含MoO3 82%)和11.5g硝酸镍(含NiO 25.2%)的氨水溶液,在喷 渍过程中匀速滴入82.5mL浓度为15%的氨水溶液于浸溶液中并搅拌均匀,边滴入边喷 浸。在喷浸设备中均化5分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时, 再在500℃空气中焙烧3小时,制得催化剂。编号为DS-1#。DS-1#的物性数据如下: MoO3含量为10.78%,NiO质量含量为1.93%,比表面积129m2/g,孔体积0.66m L/g, 堆比重0.59g/mL,孔隙率为42%,粒径为1.3mm。

称取150g,吸水率为1.10mL/g的Al2O3载体,按饱和吸收溶液量喷浸82.5mL含 29.8g钼酸铵(含MoO3 82%质量)和27.0g硝酸镍(含NiO 25.2%)的磷酸溶液, 在喷渍过程中匀速滴入82.5mL浓度为15%的氨水溶液于浸溶液中并搅拌均匀,边滴入边 喷浸。在喷浸设备中均化5分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时, 再在500℃空气中焙烧3小时,制得催化剂。编号为DS-2#。DS-2#的物性数据如下: MoO3含量为13.5%,NiO质量含量为3.72%,比表面积175m2/g,孔体积0.63m L/g, 堆比重0.65g/mL,孔隙率为41%,粒径为1.3mm。

固定床脱氮反应器装填1种加氢脱氮催化剂DN-1#,催化剂制备方法如下:

加氢脱氮催化剂制备方法如下:

以Al2O3作载体,吸水率为1.10mL/g。采用浸泡法制备活性金属组分为W、Ni的 催化剂。

称取150g,吸水率为1.10mL/g Al2O3载体,喷浸100mL浓度为5%的氨水溶液, 在喷渍过程中匀速滴入65mL含63g偏钨酸铵(含WO3 88%)和18g硝酸镍(含NiO  25.2%)的氨水溶液于上述溶液中并搅拌,边滴入边喷浸,5分钟喷浸完。在喷浸设备中 均化10分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中 焙烧3小时,制得催化剂。编号为DN-1#。其中,WO3含量为25.6%,NiO含量为2.5%, 比表面积为193m2/g,孔体积为0.46mL/g,堆比重为0.83g/mL,孔隙率为40%,粒径 为1.1mm。

实施例1所用原料油A为减压渣油,其性质如表3所示。

以下为装置运行方案:

将渣油原料一起进入加氢处理装置的上流式反应器R-1A和/或R-1B的底部,与上流 式反应器催化剂接触进行脱铁脱钙反应,其反应生成物有两条运行方式:一是不经分离直 接进入上流式反应器R-2的底部,在催化剂存在下进行加氢脱金属(Ni、V)反应,其反 应生成物不经分离,直接进入固定床脱硫反应器R-3,在催化剂存在下进行加氢脱硫反应; 二是直接进入脱硫反应器,在催化剂存在下进行加氢脱硫反应。其脱硫反应器反应生成物 不经分离,直接进入固定床脱氮反应器R-4。

脱铁脱钙装置运行过程步骤如下:

(1)在反应初期,R-1A和R-1B反应器一起使用,重油或渣油原料先进入R-1A,再进 入R-1B进行脱铁脱钙反应。

(2)反应一段时间后,R-1A反应器催化剂活性接近中后期,这时可以改变原料流向, 原料先进R-1B反应器再进R-1A反应器。

(3)在R-1A反应器中脱铁脱钙催化剂处于失活阶段,关闭R-1A反应器进料阀,并 用再生和/或用新鲜催化剂替换反应器的催化剂。此时物料只进R-1B反应器。

(4)R-1A完成换剂后,物料先进R-1B反应器,再进已换剂的反应器R-1A。

(5)在R-1B反应器中脱铁脱钙催化剂处于失活阶段,关闭R-1B反应器进料阀,并 用再生和/或用新鲜催化剂替换反应器的催化剂。此时物料只进R-1A反应器。

(6)继续重复步骤(1)-步骤(5)。

对于脱金属反应器R-2而言,在运行过程中,尤其在脱金属催化剂活性末期,物料自 脱铁脱钙反应器出来可以直接进入脱硫反应器R-3。并用再生和/或用新鲜催化剂替换反 应器的脱金属催化剂。完成催化剂替换后,物料自脱铁脱钙反应器出来再依次进入脱金属 反应器R-2、脱硫反应器R-3和脱氮反应器R-4。其反应条件其反应条件和反应结果如表 4所示。

实施例2

实施例中的加氢工艺组合包括5个反应器,其中包括2个上流式脱铁脱钙反应器、 1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催化剂级配组装方 案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫剂和加氢脱氮剂, 加入比例分别为25%、25%、20%、30%。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂,编号为DFC-2#,制备 方法如下:

选择拉西环Al2O3作载体,称取150g,吸水率为1.10mL/g的Al2O3载体,喷浸 50mL含8.6g钼酸铵(含MoO3 82%,北京化学试剂公司)和3.10g硝酸镍(含NiO  25.2%,北京化学试剂公司)的氨水溶液,5分钟喷浸完。在喷浸设备中均化10分钟后, 在130℃下干燥15分钟,再在500℃空气中焙烧3小时,再在500℃空气中焙烧3小时, 制得催化剂。DFC-2#的物性数据如下:MoO3含量为4.09%,NiO含量为0.48%,比表 面积为112m2/g,孔体积为0.82mL/g,堆比重为0.43g/mL,孔隙率为50%,催化剂粒 径为11mm。

上流式脱金属反应器自上至下依次装填2种加氢脱金属剂,编号分别为DM-1#和 DM-2#,添加比例(重量)为1∶1。加氢脱金属催化剂制备方法同实施例1。

脱硫反应器自上至下依次装填2种加氢脱硫剂,编号分别为DS-1#和DS-2#,添加 比例(重量)为1∶3。脱硫催化剂制备方法同实施例1。

固定床脱氮反应器自上至下依次装填2种加氢脱氮催化剂,编号DN-1#和DN-2#。 其中DN-1#催化剂制备方法同实施例1。

DN-2#催化剂制备方法如下:

称取150g,吸水率为1.10mL/g含10.0%TiO2的Al2O3载体,喷浸82.5mL含21.35g 钼酸铵(含MoO3 82%)和39.7g硝酸镍(含NiO 25.2%)的水溶液,在喷渍过程中 匀速滴入82.5mL含21.35g钼酸铵(含MoO3 82%)的水溶液于溶液中并搅拌,边滴 入边喷浸,10分钟喷浸完。在喷浸设备中均化10分钟后,在60℃下干燥2小时,取出 后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为DN-2#。 DN-2#的物性数据如下:MoO3含量为17.89%,NiO质量含量为3.6%,比表面积 198m2/g,孔体积0.42mL/g,堆比重0.78g/mL,孔隙率为40%,粒径为1.1mm。

实施例2所用原料油B为渣油原料,其性质如表3所示。装置运行同实施例1。其反 应条件其反应条件和反应结果如表4所示。

实施例3

实施例中的加氢工艺组合包括5个反应器,其中包括2个上流式脱铁脱钙反应器、 1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催化剂级配组装方 案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫剂和加氢脱氮剂, 加入比例分别为15%、20%、25%、40%。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂DFC-1#,催化剂同实施 例1。

上流式脱金属反应器装填1种加氢脱金属剂DM-2#,催化剂同实施例1。

脱硫反应器装填1种加氢脱硫剂,编号分别为DS-2#。催化剂同实施例1。

固定床脱氮反应器装填1种加氢脱氮催化剂DN-2#,催化剂同实施例2。

评价所用原料油C为渣油原料,其性质如表3所示。装置运行同实施例1。其反应 条件其反应条件和反应结果如表4所示。

实施例4

实施例中的加氢工艺组合包括5个反应器,其中包括2个上流式脱铁脱钙反应器、 1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催化剂级配组装方 案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫剂和加氢脱氮剂, 加入比例分别为15%、15%、20%、50%。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂DFC-2#,催化剂同实施 例2。

上流式脱金属反应器装填1种加氢脱金属剂DM-1#,催化剂同实施例1。

脱硫反应器自上至下依次装填2种加氢脱硫剂,编号分别为DS-1#和DS-2#,添加 比例(重量)为1∶2。催化剂同实施例1和实施例2。

固定床脱氮反应器装填1种加氢脱氮催化剂DN-1#,催化剂同实施例1。

评价所用原料油D为渣油原料,其性质如表3所示。装置运行同实施例1。其反应 条件其反应条件和反应结果如表4所示。

实施例5

实施例中的加氢工艺组合包括5个反应器,其中包括2个上流式脱铁脱钙反应器、 1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催化剂级配组装方 案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫剂和加氢脱氮剂, 加入比例分别为18%、20%、30%、32%。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂DFC-2#,催化剂同实施 例2。

上流式脱金属反应器自上至下依次装填2种加氢脱金属剂DM-1#和DM-2#,添加 比例(重量)为1∶2。制备方法同实施例1。

脱硫反应器自上至下依次装填2种加氢脱硫剂,编号分别为DS-1#和DS-2#,添加 比例(重量)为1∶2。催化剂同实施例1和实施例2。

固定床脱氮反应器自上至下依次装填2种加氢脱氮催化剂DN-1#,催化剂同实施例 1。

评价所用原料油E为减压渣油,其性质如表3所示。装置运行同实施例1。其反应条 件其反应条件和反应结果如表5所示。

实施例6

实施例中的加氢工艺组合包括5个反应器,其中包括2个上流式脱铁脱钙反应器、 1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催化剂级配组装方 案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫剂和加氢脱氮剂, 加入比例分别为15%、20%、35%、30%。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂DFC-2#,催化剂同实施 例2。

上流式脱金属反应器装填1种加氢脱金属剂DM-1#,制备方法同实施例1。

脱硫反应器装填1种加氢脱硫剂,编号分别为DS-1#。催化剂同实施例1。

固定床脱氮反应器装填1种加氢脱氮催化剂DN-1#,催化剂同实施例1。

评价所用原料油F为减压渣油,其性质如表3所示。装置运行同实施例1。其反应条 件其反应条件和反应结果如表5所示。

实施例7

实施例中的加氢工艺组合包括5个反应器,其中包括2个上流式脱铁脱钙反应器、 1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。采用催化剂级配组装方 案,在反应器内分别装填加氢脱铁脱钙催化剂、加氢脱金属剂、加氢脱硫剂和加氢脱氮剂, 加入比例分别为15%、30%、30%、25%。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂DFC-2#,催化剂同实施 例2。

上流式脱金属反应器自上至下依次装填2种加氢脱金属剂DM-1#和DM-2#,添加 比例(重量)为1∶3。制备方法同实施例1。

固定床脱硫反应器自上至下依次装填2种加氢脱硫剂,编号分别为DS-1#和DS-2#, 添加比例(重量)为1∶3。催化剂同实施例1和实施例2。

固定床脱氮反应器自上至下依次装填2种加氢脱氮催化剂DN-1#和DN-2#,添加比 例(重量)为1∶1。催化剂同实施例1和实施例2。

评价所用原料油G为减压渣油,其性质如表3所示。装置运行同实施例1。其反应 条件其反应条件和反应结果如表5所示。

对比例1

对比例1中的加氢工艺组合包括5个固定床反应器,其中包括2个固定床脱铁脱钙 反应器、1个固定床脱金属反应器、1个脱硫反应器以及1个脱氮反应器,原料物流全部 自上而下通过反应器。两个脱铁脱钙反应器装填加氢脱铁脱钙剂,脱金属反应器装填加氢 脱金属剂,脱硫反应器和脱氮反应器分别装填加氢脱硫剂和加氢脱氮剂。催化剂组合及级 配比例同实施例1。

对比例1所用原料油A为减压渣油,其性质如表1所示。装置运行同实施例1。其 反应条件和反应产物性质如表4所示,由表4可以看出,在操作条件相同的情况下,实 施例1的脱铁脱钙率、脱金属率、脱硫率和脱氮率均高于对比例。并且对比例的操作周 期也明显低于实施例1。

对比例2

对比例2中的加氢工艺组合包括5个固定床反应器,其中包括2个固定床脱铁脱钙 反应器、1个固定床脱金属反应器、1个脱硫反应器以及1个脱氮反应器,原料物流全部 自上而下通过反应器。两个脱铁脱钙反应器装填加氢脱铁脱钙剂,脱金属反应器装填加氢 脱金属剂,脱硫反应器和脱氮反应器分别装填加氢脱硫剂和加氢脱氮剂。催化剂组合及级 配比例同实施例2。

对比例2所用原料油B为减压渣油,其性质如表3所示。装置运行同实施例1。其反 应条件其反应条件和反应结果如表4所示。由表4可以看出,在操作条件相同的情况下, 实施例2的脱铁脱钙率、脱金属率、脱硫率和脱氮率均高于对比例。并且对比例2的操 作周期也明显低于实施例2。

对比例3

对比例3中的加氢工艺组合包括5个个反应器,其中包括2个上流式脱铁脱钙反应 器、1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。但工艺流程如图2 所示,运行其它条件、催化剂组合及级配比例均与实施例3相同,其反应条件其反应条 件和反应结果如表4所示。由表4可知,对比例3的脱铁脱钙率、脱金属率、脱硫率和 脱氮率均低于实施例3。操作周期也明显低于实施例3。

对比例4

对比例4中的加氢工艺组合包括5个固定床反应器,其中包括2个固定床脱铁脱钙 反应器、1个固定床脱金属反应器、1个脱硫反应器以及1个脱氮反应器。原料物流全部 自上而下通过反应器。催化剂组合及级配比例均同实施例4。

加氢脱铁脱钙催化剂、加氢脱金属催化剂、加氢脱硫催化剂以及加氢脱氮催化剂均同 实施例4。

对比例所用原料油D为渣油原料,其性质如表3所示。装置运行同实施例1。其反 应条件其反应条件和反应结果如表4所示。由表4可以看出在操作条件相同的情况下, 实施例4的脱铁脱钙率、脱金属率、脱硫率和脱氮率均高于对比例4。并且对比例的操作 周期也明显低于实施例4。

对比例5

对比例5使用与实施例3一样的的加氢工艺组合和装置运行方案,包括2个上流式 脱铁脱钙反应器、1个上流式脱金属反应器、1个脱硫反应器以及1个脱氮反应器。催 化剂级配比例也同实施例3,但催化剂型号不同。

上流式固定床脱铁脱钙反应器装填1种加氢脱铁脱钙催化剂,编号为DFC-3#,催化 剂的制备方法如下:

以空心凸轮形状Al2O3作载体,采用饱和喷浸方法制备活性金属组分为Mo的催化 剂。

称取150g,吸水率为1.10mL/g的Al2O3载体,喷浸165mL含4.3g钼酸铵(含 MoO3 82%,北京化学试剂公司)的氨水溶液,5分钟喷浸完。在喷浸设备中均化10分 钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中焙烧3小 时,制得催化剂DFC-3#。其物性数据如下:MoO3含量为3.15%,比表面积80m2/g, 孔体积0.85mL/g,堆比重0.43g/mL,孔隙率为50%,催化剂粒径为13mm。

上流式脱金属反应器装填1种加氢脱金属催化剂,编号为DM-3#。催化剂制备方法 如下:

称取150g,吸水率为1.10mL/g含1.5%m TiO2的Al2O3载体,喷浸165mL含 18.6g钼酸铵(含MoO3 82%)的水溶液,15分钟喷浸完。在喷浸设备中均化10分 钟后,在120℃下干燥5小时,再在500℃空气中焙烧4小时,制得催化剂。编号为DM-3#。 DM-3#的物性数据如下:MoO3含量为4.5%,比表面积120m2/g,孔体积0.78mL/g, 堆比重0.51g/mL,孔隙率为45%,粒径为3mm。

固定床脱硫反应器装填的催化剂选用DS-3#,催化剂制备方法如下:

称取150g,吸水率为1.10mL/g的Al2O3载体,按饱和吸收溶液量喷浸165mL含 29.8g钼酸铵(含MoO3 82%质量)和22.0g硝酸镍(含NiO 25.2%)的氨水溶液。 在喷浸设备中均化15分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在 500℃空气中焙烧3小时,制得催化剂。编号为DS-3#。DS-3#的物性数据如下:MoO3含量为13.6%,NiO质量含量为3.35%,比表面积179m2/g,孔体积0.51mL/g,堆比 重0.69g/mL,孔隙率为42%,粒径为1.3mm。

固定床脱氮反应器装填1种加氢脱氮催化剂,编号为DN-3#。催化剂制备方法如下:

称取150g,吸水率为1.10mL/g含10.0%TiO2的Al2O3载体,喷浸165mL含42.7g 钼酸铵(含MoO3 82%)和39.7g硝酸镍(含NiO 25.2%)和磷酸的水溶液,10分 钟喷浸完。在喷浸设备中均化10分钟后,在60℃下干燥2小时,取出后120℃下干燥3 小时,再在500℃空气中焙烧3小时,制得催化剂。编号为DN-3#。DN-3#的物性数据 如下:MoO3含量为17.85%,NiO质量含量为5.2%,比表面积200m2/g,孔体积 0.41mL/g,堆比重0.79g/mL,孔隙率为40%,粒径为1.1mm。

所用原料油C为渣油原料,其性质如表3所示。装置运行同实施例1。其反应条件 其反应条件和反应结果如表4所示。

采用EDX表征手段对催化剂DFC-1、DFC-2、DM-1、DM-2、DS-1、DS-2、DN-1、 DN-2进行了表征,描述活性组分在催化剂颗粒上的分布情况,结果参见表1和表2。可 以看出,催化剂DFC-1、DFC-2中活性金属呈“蛋黄”分布、催化剂颗粒自内到外,DM-1、 DM-2、DS-1、DS-2中,单个或多个活性金属浓度呈梯度下降趋势;DN-1和DN-2中, 单个或多个活性金属浓度呈梯度增加趋势;DFC-3、DM-3、DS-3和DN-3中,活性金属 分步较为均匀。

表1催化剂颗粒上活性金属浓度分布

  编号   DFC-1   DFC-2   DFC-3   DM-1   DM-2   DM-3   DS-1   DS-2   DS-3   W(外表面)/W(中心)   Mo(外表面)/Mo(中心)   0.007   0.01   0.89   0.86   0.25   0.91   0.28   0.33   1.06   Co(外表面)/Co(中心)   0.95   Ni(外表面)/Ni(中心)   0.012   0.30   0.32   0.29   1.10   W(2/3R)/W(中心)   Mo(2/3R)/Mo(中心)   0.12   0.09   1.03   0.95   0.51   1.05   0.51   0.45   1.02   Co(2/3R)/Co(中心)   1.01   Ni(2/3R)/Ni(中心)   0.15   0.53   0.39   0.52   0.99   W(1/3R)/W(中心)   Mo(1/3R)/Mo(中心)   0.90   0.92   0.96   0.96   0.82   0.93   0.85   0.83   0.96

  Co(1/3R)/Co(中心)   0.99   Ni(1/3R)/Ni(中心)   0.9   0.82   0.88   0.78   1.01

注:以颗粒中心为起始点,R为催化剂颗粒半径。

表2催化剂颗粒上活性金属浓度分布

  编号   DN-1   DN-2   DN-3   活性金属浓度分布   W(中心)/W(外表面)   0.26   Mo(中心)/Mo(外表面)   0.97   1.01   Co(中心)/Co(外表面)   Ni(中心)/Ni(外表面)   0.28   0.32   0.99   W(1/3R)/W(外表面)   0.45   Mo(1/3R)/Mo(外表面)   0.98   1.03   Co(1/3R)/Co(外表面)   Ni(1/3R)/Ni(外表面)   0.48   0.48   1.02   W(2/3R)/W(外表面)   0.81   Mo(2/3R)/Mo(外表面)   1.01   0.98   Co(2/3R)/Co(外表面)   Ni(2/3R)/Ni(外表面)   0.86   0.85   1.05

注:以颗粒中心为起始点,R为催化剂颗粒半径。

表3试验原料油主要性质

  原料名称   A   B   C   D   E   F   G   密度(20℃),kg/m3  968.1   956.2   962.2   971.3   976.2   982.3   955.2   Fe,μg/g   25   7.8   10   15   2   3   8   Ca,μg/g   2.2   40   30.25   10   3   5   15   (Ni+V),μg/g   90.6   50.2   42   60   110.1   105.2   60   硫,%   3.01   2.32   2.6   1.9   3.8   3.5   4.2   氮,%   0.19   0.39   0.16   0.3   0.26   0.21   0.31   残炭,%   14.1   12.1   13.1   13.2   13.6   13.3   14.32

表4工艺条件和产品性质

表5工艺条件和产品性质

  项目   实施例5   实施例6   实施例7   压力,MPa   15.0   15.0   15.0   氢油比(体积)   上流式脱铁脱钙反应器   650   650   650   上流式脱金属反应器   650   650   650   固定床脱硫反应器   850   850   850   固定床脱氮反应器   850   850   850   液时空速,h-1  0.22   0.22   0.22   反应温度,℃   上流式脱铁脱钙反应器   380   380   380   上流式脱金属反应器   385   385   385   固定床脱硫反应器   390   390   390   固定床脱氮反应器   390   390   390   生成油性质   S,%   0.37   0.35   0.40   N,%   0.08   0.02   0.03   Ni+V,μg/g   12.42   10.16   6.13   Fe,μg/g   0.12   0.21   0.71   Ca,μg/g   0.19   0.30   1.16   CCR,%   3.88   3.81   4.09   运行周期,月   25   25   22

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号