首页> 外文OA文献 >Ultrafast phase-change logic device driven by melting processes
【2h】

Ultrafast phase-change logic device driven by melting processes

机译:由熔化过程驱动的超快相变逻辑器件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change–based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change–based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change–based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates.
机译:当前,对速度更快的计算机的超高需求已通过诸如尺寸缩放(用于增加设备数量)之类的传统方法来解决,但是由于物理和光刻限制,这几乎变得几乎不可能。为了在不增加逻辑设备数量的情况下提高计算机速度,最可行的解决方案之一是增加设备执行的操作数量,这在使用当前的基于硅的逻辑设备中几乎是不可能的。使用结晶已经在基于相变的逻辑器件中实现了多种操作。但是,它们几乎可以达到几百纳秒的速度。结晶速度和非晶相的长期稳定性之间的权衡也产生了困难。相反,我们在这里通过预熔化无序效应来控制熔化过程,同时保持了基于相变的逻辑器件优于基于硅的逻辑器件的优势。实现多个布尔代数运算(例如NOR和NOT)的熔化速度仅为900 ps。从头算分子动力学模拟和原位电表征揭示了通过预熔融无序熔化的起源(即原子的键屈曲)和动力学(例如不连续样行为),这是提高熔化速度的关键。通过对良好表征的相变行为的细致研究,此简单方法提供了一种优雅的解决方案,可以显着提高基于相变的内存中逻辑设备的速度,从而为实现可以执行接近计算的计算机铺平了道路。太赫兹处理速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号