首页> 外文OA文献 >Deployment algorithms for multi-agent exploration and patrolling
【2h】

Deployment algorithms for multi-agent exploration and patrolling

机译:用于多代理探索和巡逻的部署算法

摘要

Exploration and patrolling are central themes in distributed robotics. These deployment scenarios have deep fundamental importance in robotics, beyond the most obvious direct applications, as they can be used to model a wider range of seemingly unrelated deployment objectives. Deploying a group of robots, or any type of agent in general, to explore or patrol in dynamic or unknown environments presents us with some fundamental conceptual steps. Regardless of the problem domain or application, we are required to (a) understand the environment that the agents are being deployed in; (b) encode the task as a set of constraints and guarantees; and (c) derive an effective deployment strategy for the operation of the agents. This thesis presents a coherent treatment of these steps at the theoretical and practical level. First, we address the problem of obtaining a concise description of a physical environment for robotic exploration. Specifically, we aim to determine the number of robots required to be deployed to clear an environment using non-recontaminating exploration. We introduce the medial axis as a configuration space and derive a mathematical representation of a continuous environment that captures its underlying topology and geometry. We show that this representation provides a concise description of arbitrary environments, and that reasoning about points in this representation is equivalent to reasoning about robots in physical space. We leverage this to derive a lower bound on the number of required pursuers. We provide a transformation from this continuous representation into a symbolic representation. We then present a Markov-based model that captures a pickup and delivery (PDP) problem on a general graph. We present a mechanism by which a group of robots can be deployed to patrol the graph in order to fulfill specific service tasks. In particular, we examine the problem in the context of urban transportation, and establish a model that captures the operation of a fleet of taxis in response to incident customer arrivals throughout the city. We consider three different evaluation criteria: minimizing the number of transportation resources for urban planning; minimizing fuel consumption for the drivers; and minimizing customer waiting time to increase the overall quality of service. Finally, we present two deployment algorithms for multi-robot exploration and patrolling. The first is a generalized pursuit-evasion algorithm. Given an environment we can compute how many pursuers we need, and generate an optimal pursuit strategy that will guarantee the evaders are detected with the minimum number of pursuers. We then present a practical patrolling policy for a general graph. We evaluate our policy using real-world data, by comparing against the actual observed redistribution of taxi drivers in Singapore. Through large-scale simulations we show that our proposed deployment strategy is stable and improves substantially upon the default unmanaged redistribution of taxi drivers in Singapore.
机译:探索和巡逻是分布式机器人技术的中心主题。除了最明显的直接应用程序之外,这些部署方案在机器人技术中具有深远的根本重要性,因为它们可以用于为看似无关的广泛部署目标建模。部署一组机器人或通常使用任何类型的代理在动态或未知环境中进行探索或巡逻为我们提供了一些基本的概念性步骤。无论问题域或应用程序是什么,我们都必须(a)了解代理所部署的环境; (b)将任务编码为一组约束和保证; (c)为代理商的运作得出有效的部署策略。本文在理论和实践上提出了对这些步骤的连贯处理。首先,我们解决了获得对机器人探索的物理环境的简洁描述的问题。具体来说,我们的目标是确定使用无污染勘探技术来清理环境所需的机器人数量。我们将中间轴引入为配置空间,并得出捕获其基础拓扑和几何形状的连续环境的数学表示。我们证明了这种表示形式提供了对任意环境的简洁描述,并且这种表示形式中有关点的推理等同于关于物理空间中的机器人的推理。我们利用这一点来得出所需追踪者数量的下限。我们提供了从这种连续表示到符号表示的转换。然后,我们提出一个基于Markov的模型,该模型可以捕获一般图形上的取货和交货(PDP)问题。我们提出了一种机制,通过该机制可以部署一组机器人来巡视图形,以完成特定的服务任务。特别是,我们在城市交通的背景下研究了这个问题,并建立了一个模型来捕获出租车的运行,以响应整个城市发生的事件。我们考虑三种不同的评估标准:尽量减少用于城市规划的运输资源;尽量减少驾驶员的油耗;并最大程度地减少客户的等待时间,以提高整体服务质量。最后,我们提出了两种用于多机器人探索和巡逻的部署算法。第一种是广义的追逃算法。在给定的环境下,我们可以计算所需的追踪者数量,并生成最佳的追踪策略,以确保以最少的追踪者数量检测到逃避者。然后,我们为一般图提供实用的巡逻策略。通过与实际观察到的新加坡出租车司机的再分配进行比较,我们使用实际数据评估我们的政策。通过大规模仿真,我们证明了我们提出的部署策略是稳定的,并且在新加坡出租车司机默认无管理的重新分配后得到了大幅改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号