首页> 外文OA文献 >Carbon nanotubes and graphene in aqueous surfactant solutions : molecular simulations and theoretical modeling
【2h】

Carbon nanotubes and graphene in aqueous surfactant solutions : molecular simulations and theoretical modeling

机译:表面活性剂水溶液中的碳纳米管和石墨烯:分子模拟和理论建模

摘要

This thesis describes combined molecular simulations and theoretical modeling studies, supported by experimental observations, on properties and applications of carbon nanotubes (CNTs) and graphene sheets dispersed in aqueous surfactant solutions. In particular, the role of the bile salt anionic surfactant, sodium cholate (SC), in dispersing single-walled carbon nanotubes (SWCNTs) and graphene sheets in aqueous solutions was investigated. In addition, the roles of various surfactants (SC, sodium dodecyl sulfate (SDS, anionic), and cetyl trimethylammonium bromide (CTAB, cationic)) in controlling the extent of functionalization of SWCNTs were investigated. First, the surface structure of adsorbed surfactant (SC) molecules on the SWCNT surface was studied using molecular dynamics (MD) simulations, and the interactions between two SWCNT-SC complexes were determined using potential of mean force (PMF) calculations. I found that the cholate ions wrap around the SWCNT like a ring, and exhibit a small tendency to orient perpendicular to the cylindrical axis of the SWCNT, a unique feature that has not been observed for conventional linear surfactants such as SDS. By comparing my simulated PMF profile of SC with the PMF profile of SDS reported in the literature, I found that, at the saturated surface coverages, SC is a better stabilizer than SDS, a finding that is consistent with the widespread use of SC to disperse SWNTs in aqueous media. Second, I probed the surface structure and electrostatic potential of monolayer graphene dispersed in a SC aqueous solution. Subsequently, I quantified the interactions between two graphene-SC complexes using PMF calculations, which confirmed the existence of a metastable bilayer graphene structure due to the steric hindrance of the confined SC molecules. Interestingly, one faces a dilemma when using surfactants to disperse and stabilize graphene in aqueous solution: on the one hand, surfactants can stabilize graphene aqueous dispersions, but on the other hand, they prevent the formation of new AB-stacked bilayer and trilayer graphene resulting from the reaggregation process. Finally, the lifetime and time-dependent distribution of various graphene layer types were predicted using a kinetic model of colloid aggregation, and each graphene layer type was further decomposed into subtypes, including the AB-stacked species and various turbostratic species. Third, I showed that the free energy of diazonium adsorption onto the SWCNT-surfactant complex, determined using PMF calculations, can be used to rank surfactants (SC, SDS, and CTAB) in terms of the extent of functionalization attained following their adsorption on the nanotube surface. The difference in binding affinities between linear and rigid surfactants was attributed to the synergistic binding of the diazonium ion to the local "hot/cold spots" formed by the charged surfactant heads. A combined simulation-modeling framework was developed to provide guidance for controlling the various sensitive experimental conditions needed to achieve the desired extent of SWCNT functionalization. In conclusion, molecular simulations of the type discussed in this thesis, which can be used to complement traditional continuum-based theories, provide a powerful tool to investigate nano-structured aqueous dispersions. The combined simulation-modeling methodology presented in this thesis can be extremely useful in predicting material properties and optimizing experimental procedures in order to minimize tedious and time-consuming trial-and-error experimentation when studying other nanoscale systems of interest.
机译:本文描述了结合分子模拟和理论建模研究,并得到实验观察结果的支持,研究了碳纳米管和分散在表面活性剂水溶液中的石墨烯片的性能和应用。尤其是,研究了胆盐阴离子表面活性剂胆酸钠(SC)在将单壁碳纳米管(SWCNT)和石墨烯片分散在水溶液中的作用。此外,研究了各种表面活性剂(SC,十二烷基硫酸钠(SDS,阴离子)和十六烷基三甲基溴化铵(CTAB,阳离子))在控制SWCNTs官能化程度方面的作用。首先,使用分子动力学(MD)模拟研究了SWCNT表面上吸附的表面活性剂(SC)分子的表面结构,并使用平均力(PMF)计算法确定了两个SWCNT-SC配合物之间的相互作用。我发现胆酸盐离子像一个环一样缠绕在SWCNT周围,并表现出较小的垂直于SWCNT圆柱轴取向的趋势,这是传统线性表面活性剂(如SDS)所没有观察到的独特特征。通过将我模拟的SC的PMF轮廓与文献中报道的SDS的PMF轮廓进行比较,我发现,在饱和表面覆盖范围内,SC比SDS更好的稳定剂,这一发现与SC广泛用于分散水性介质中的单壁碳纳米管。其次,我研究了分散在SC水溶液中的单层石墨烯的表面结构和静电势。随后,我使用PMF计算法量化了两个石墨烯-SC配合物之间的相互作用,这证实了由于受限SC分子的空间位阻,存在了亚稳态双层石墨烯结构。有趣的是,在使用表面活性剂分散和稳定水溶液中的石墨烯时,一个难题:一方面,表面活性剂可以稳定石墨烯的水分散体,但另一方面,它们可以防止形成新的AB堆积的双层和三层石墨烯从重新聚合过程中。最后,使用胶体聚集的动力学模型预测了各种石墨烯层类型的寿命和时间依赖性分布,并且将每种石墨烯层类型进一步分解为亚型,包括AB堆积物种和各种涡轮层物种。第三,我证明了重氮吸附到SWCNT-表面活性剂络合物上的自由能(通过PMF计算确定)可用于根据表面活性剂(SC,SDS和CTAB)在吸附到表面活性剂后获得的官能化程度进行排名。纳米管表面。线性和刚性表面活性剂之间的结合亲和力的差异归因于重氮离子与带电表面活性剂头形成的局部“热/冷点”的协同结合。开发了组合的仿真模型框架,以提供指导,以控制实现期望的SWCNT功能化程度所需的各种敏感实验条件。总之,本文所讨论类型的分子模拟可用于补充基于连续谱的传统理论,为研究纳米结构水分散体提供了强大的工具。本文提出的组合模拟建模方法对于预测材料性能和优化实验程序,以最大程度地减少研究其他感兴趣的纳米级系统时的繁琐且耗时的反复试验,可能非常有用。

著录项

  • 作者

    Lin Shangchao;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号