首页> 外文OA文献 >Reduced-basis methods applied to problems in elasticity : analysis and applications
【2h】

Reduced-basis methods applied to problems in elasticity : analysis and applications

机译:适用于弹性问题的简化方法:分析和应用

摘要

Modern engineering problems require accurate, reliable, and efficient evaluation of quantities of interest, the computation of which often requires solution of a partial differential equation. We present a technique for the prediction of linear-functional outputs of elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly convergent global reduced-basis approximations - projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space (Accuracy); (ii) a posteriori error estimation - relaxations of the error-residual equation that provide inexpensive bounds for the error in the outputs of interest (Reliability); and (iii) off-line/on-line computational procedures - methods which decouple the generation and projection stages of the approximation process (Efficiency). The operation count for the on-line stage depends only on N (typically very small) and the parametric complexity of the problem. We present two general approaches for the construction of error bounds: Method I, rigorous a posteriori error estimation procedures which rely critically on the existence of a "bound conditioner" - in essence, an operator preconditioner that (a) satisfies an additional spectral "bound" requirement, and (b) admits the reduced-basis off-line/on-line computational stratagem; and Method II, a posteriori error estimation procedures which rely only on the rapid convergence of the reduced-basis approximation, and provide simple, inexpensive error bounds, albeit at the loss of complete certainty. We illustrate and compare these approaches for several simple test problems in heat conduction, linear elasticity, and (for Method II) elastic stability.
机译:现代工程问题要求对感兴趣的数量进行准确,可靠和有效的评估,而对其计算通常需要求解偏微分方程。我们提出了一种仿射参数依赖性椭圆偏微分方程线性函数输出的预测技术。基本组成部分是:(i)快速收敛的全局减基近似值-投影到空间WN上,该空间WN由控制偏微分方程在参数空间中N个选定点的解所覆盖(精度); (ii)后验误差估计-误差残差方程的松弛,为感兴趣的输出中的误差提供了便宜的界限(可靠性); (iii)离线/在线计算程序-将近似过程的生成阶段和投影阶段解耦的方法(效率)。在线阶段的操作数仅取决于N(通常非常小)和问题的参数复杂性。我们提供了两种常见的错误边界构建方法:方法一,严格的后验误差估计程序,严重依赖于“绑定条件调节器”的存在-本质上,是(a)满足附加频谱“绑定”的运算符预处理器”的要求,并且(b)接受降低基准的离线/在线计算策略;方法II,一种后验误差估计程序,它仅依赖于降低基数近似的快速收敛,并且尽管失去了完全的确定性,却提供了简单,廉价的误差范围。我们针对导热,线性弹性和(对于方法II)弹性稳定性中的几个简单测试问题,说明并比较了这些方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号