首页> 外文OA文献 >Molecular adsorption at solid/liquid interfaces using self-assembled monolayer films
【2h】

Molecular adsorption at solid/liquid interfaces using self-assembled monolayer films

机译:使用自组装单层膜在固/液界面处的分子吸附

摘要

Many areas of technology rely on interfacial events that are controlled by nanometer-level interactions present at solid/liquid interfaces. Properties of wetting, corrosion inhibition, and molecular recognition provide convenient examples. To investigate such interactions at the molecular level, self-assembled monolayers (SAMs) have been employed as a model system as they offer the ability to produce well-defined organic surfaces of controlled composition. This thesis addresses the development and characterization of such films for controlling the adsorptive properties of surfaces toward various surfactant-like molecules and for proteins. Adsorption is controlled to facilitate the organized assembly of molecular precursors, retard the non-specific adsorption of proteins, provide a specificity for the adsorption of select proteins, and the use of molecular adsorption to generate local surface energy gradients useful for directing self propelled drop movement. A common theme in these studies is the importance of controlling the energetics and compositions of surfaces at the molecular level to influence microscopic events that translate into macroscopically observable changes in behavior. The first part of this thesis details the formation of monolayer films by the solution-phase adsorption of n-alkyl-chained adsorbates [CH 3(CH2)~ Y] onto the polar surfaces of terminally substituted SAMs [Au/S(CH)mX]. The polar tail groups (X and Y) of the adsorbate and SAM included amine, carboxylic acid, and amide groups, and the formation of the adsorbed monomolecular films on the SAMs relied on non-covalent interactions between X and Y. Highly organized monomolecular adlayers could be produced that were as densely packed as the alkanethiolate SAMs on gold comprising the first layer. This thesis also used this molecular adsorption process to cause liquid drops to move spontaneously on surfaces by creating local changes in surface energy. The drops could be directed to move along specified paths using patterned substrates that contained inner tracks of polar functionality and exterior domains of oleophobic methyl groups. The adsorption process allowed sequential transport of two drops on a common track and also regeneration of the initial high energy surface for reuse. The developed system provides an experimental platform for examining reactive flow and offers a novel "pumpless" method for sequentially delivering multiple drops along surfaces and within microfluidic devices. The second part of this thesis discusses various oligo(ethylene glycol)-terminated alkyltrichlorosilanes [C13Si(CH2)11(OCH2CHnX; X = -OCH 3 or -O 2CCH 3, n= 2- 4] that can form robust films on glass and metal oxide surfaces and control the adsorption of proteins. The adsorption of the methyl-capped trichlorosilanes produces densely packed, oriented monolayer films that are 2-3 nm in thickness. The trichlorosilyl group anchors the molecules to the surface, and the resulting film exposes the ethylene glycol units at its surface, as noted by its moderate hydrophilicity. The films are robust with stabilities similar to those of other alkylsiloxane coatings. These oligo(ethylene glycol)-terminated silane reagents produce films that exhibit resistances against the non-specific adsorption of proteins and that are better than for films prepared from octadecyltrichlorosilane. These oligo(ethylene glycol)-siloxane coatings offer performance advantages and could easily provide a direct and superior replacement for protocols that presently use silane reagents to generate hydrophobic, "inert" surfaces. This thesis also discusses the development of an acetate-capped oligo(ethylene glycol)-terminated silane to produce a HO-terminated oligo(ethylene glycol)-based coating on glass and metal oxide surfaces. The HO-termini of these films provide sites for covalently grafting biomolecules to the parent surface. As a demonstration, biotin and mannose moieties were covalently attached to the HO-surfaces to provide a means to induce the specific adsorption of proteins. For these surfaces, the presence of oligo(ethylene glycol) groups reduces the nonspecific adsorption of other competing proteins. The results indicate that the developed systems could offer a strategy to arrange biomolecules selectively on glass and metal oxide surfaces.
机译:许多技术领域都依赖界面事件,这些事件是由固/液界面处存在的纳米级相互作用控制的。润湿,腐蚀抑制和分子识别的特性提供了方便的示例。为了在分子水平上研究这种相互作用,自组装单分子层(SAMs)已被用作模型系统,因为它们具有产生可控成分的良好定义的有机表面的能力。本论文研究了用于控制表面对各种表面活性剂样分子和蛋白质的吸附性能的薄膜的开发和表征。控制吸附以促进分子前体的有序组装,延迟蛋白质的非特异性吸附,为特定蛋白质的吸附提供特异性,并利用分子吸附产生可用于指导自推进液滴运动的局部表面能梯度。这些研究中的一个共同主题是在分子水平上控制表面的能量和组成,以影响微观事件的重要性,微观事件转化为行为的宏观可观察的变化。本文的第一部分详细介绍了通过在正取代的SAMs [Au / S(CH)mX]的极性表面上进行溶液相吸附正烷基链状被吸附物[CH 3(CH2)〜Y]形成单层膜的方法。 ]。被吸附物和SAM的极性尾基(X和Y)包括胺,羧酸和酰胺基,并且SAM上吸附的单分子膜的形成依赖于X和Y之间的非共价相互作用。可以生产出与硫醇链烷酸酯SAMs一样紧密堆积在构成第一层的金上的金属。本论文还利用这种分子吸附过程,通过在表面能中产生局部变化,使液滴在表面上自发移动。可以使用包含极性官能团的内部磁道和疏油甲基的外部结构域的带图案的基材,引导液滴沿着指定的路径移动。吸附过程允许在同一轨道上依次输送两滴,还可以再生初始的高能表面以供再利用。开发的系统提供了一个用于检查反应流的实验平台,并提供了一种新颖的“无泵”方法,用于沿表面和微流体装置内依次输送多个液滴。本论文的第二部分讨论了可以在玻璃上形成坚固膜的各种低聚(乙二醇)末端的烷基三氯硅烷[C13Si(CH2)11(OCH2CHnX; X = -OCH 3或-O 2CCH 3,n = 2-4)。金属氧化物表面并控制蛋白质的吸附。甲基封端的三氯硅烷的吸附产生了厚度为2-3 nm的致密堆积的定向单层膜,三氯甲硅烷基将分子锚定在表面上,所得膜暴露了表现出中等的亲水性,表明其表面具有乙二醇单元,该膜坚固耐用,具有与其他烷基硅氧烷涂料相似的稳定性,这些低聚物(乙二醇)封端的硅烷试剂产生的膜对非特异性吸附具有抵抗力。这些蛋白质,比用十八烷基三氯硅烷制备的薄膜要好。这些低聚(乙二醇)-硅氧烷涂层具有性能优势,可以很容易地直接直接提供或替代目前使用硅烷试剂生成疏水性“惰性”表面的方案。本文还讨论了乙酸盐封端的低聚乙二醇的硅烷的开发,以在玻璃和金属氧化物表面上生产基于HO封端的低聚乙二醇的涂料。这些膜的HO末端提供了将生物分子共价接枝到母体表面的位点。作为证明,生物素和甘露糖部分共价附于HO表面以提供诱导蛋白质特异性吸附的手段。对于这些表面,寡(乙二醇)基团的存在减少了其他竞争性蛋白质的非特异性吸附。结果表明,开发的系统可以提供一种在玻璃和金属氧化物表面上选择性排列生物分子的策略。

著录项

  • 作者

    Lee Seok-Won 1970-;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号