首页> 外文OA文献 >Airline schedule planning and operations : optimization-based approaches for delay mitigation
【2h】

Airline schedule planning and operations : optimization-based approaches for delay mitigation

机译:航空公司进度计划和运营:基于优化的延迟缓解方法

摘要

We study strategic and operational measures of improving airline system performance and reducing delays for aircraft, crew and passengers. As a strategic approach, we study robust optimization models, which capture possible future operational uncertainties at the planning stage, in order to generate solutions that when implemented, are less likely to be disrupted, or incur lower costs of recovery when disrupted. We complement strategic measures with operational measures of managing delays and disruptions by integrating two areas of airline operations thus far separate - disruption management and flight planning. We study different classes of models to generate robust airline scheduling solutions. In particular, we study, two general classes of robust models: (i) extreme-value robust-optimization based and (ii) chance-constrained probability-based; and one tailored model, which uses domain knowledge to guide the solution process. We focus on the aircraft routing problem, a step of the airline scheduling process. We first show how the general models can be applied to the aircraft routing problem by incorporating domain knowledge. To overcome limitations of solution tractability and solution performance, we present budget-based extensions to the general model classes, called the Delta model and the Extended Chance-Constrained programming model. Our models enhance tractability by reducing the need to iterate and re-solve the models, and generate solutions that are consistently robust (compared to the basic models) according to our performance metrics. In addition, tailored approaches to robustness can be expressed as special cases of these generalizable models. The extended models, and insights gleaned, apply not only to the aircraft routing model but also to the broad class of large-scale, network-based, resource allocation. We show how our results generalize to resource allocation problems in other domains, by applying these models to pharmaceutical supply chain and corporate portfolio applications in collaboration with IBM's Zurich Research Laboratory. Through empirical studies, we show that the effectiveness of a robust approach for an application is dependent on the interaction between (i) the robust approach, (ii) the data instance and (iii) the decision-maker's and stakeholders' metrics. We characterize the effectiveness of the extreme-value models and probabilistic models based on the underlying data distributions and performance metrics. We also show how knowledge of the underlying data distributions can indicate ways of tailoring model parameters to generate more robust solutions according to the specified performance metrics. As an operational approach towards managing airline delays, we integrate flight planning with disruption management. We focus on two aspects of flight planning: (i) flight speed changes; and (ii) intentional flight departure holds, or delays, with the goal of optimizing the trade-off between fuel costs and passenger delay costs. We provide an overview of the state of the practice via dialogue with multiple airlines and show how greater flexibility in disruption management is possible through integration. We present models for aircraft and passenger recovery combined with flight planning, and models for approximate aircraft and passenger recovery combined with flight planning. Our computational experiments on data provided by a European airline show that decrease in passenger disruptions on the order of 47.2%-53.3% can be obtained using our approaches. We also discuss the relative benefits of the two mechanisms studied - that of flight speed changes, and that of intentionally holding flight departures, and show significant synergies in applying these mechanisms. We also show that as more information about delays and disruptions in the system is captured in our models, further cost savings and reductions in passenger delays are obtained.
机译:我们研究改善航空公司系统性能并减少飞机,机组人员和乘客延误的战略和运营措施。作为一种战略方法,我们研究可靠的优化模型,该模型可以捕获计划阶段可能存在的未来运营不确定性,以生成解决方案,这些解决方案在实施时不会受到干扰,或者在受到干扰时降低回收成本。我们通过将迄今为止两个不同的航空公司运营领域(中断管理和航班计划)整合在一起,以战略措施与管理延误和中断的运营措施相辅相成。我们研究了不同类别的模型,以生成可靠的航空公司调度解决方案。特别是,我们研究了两类通用的鲁棒模型:(i)基于极值鲁棒优化和(ii)基于机会约束的概率;还有一个量身定制的模型,该模型使用领域知识来指导解决过程。我们专注于飞机路线安排问题,这是航空公司调度过程的一个步骤。我们首先展示如何通过合并领域知识将通用模型应用于飞机路径问题。为了克服解决方案可处理性和解决方案性能的局限性,我们提出了基于预算的通用模型类扩展,这些模型称为Delta模型和Extended Chance-Constrained编程模型。我们的模型通过减少对模型进行迭代和重新求解的需求来增强可处理性,并根据我们的性能指标生成始终如一的健壮(与基本模型相比)的解决方案。另外,针对鲁棒性的量身定制的方法可以表示为这些泛化模型的特殊情况。扩展的模型和所收集的见解不仅适用于飞机的航线模型,而且适用于广泛的基于网络的大规模资源分配。通过与IBM苏黎世研究实验室合作,将这些模型应用于制药供应链和企业投资组合应用程序,我们将展示我们的结果如何推广到其他领域的资源分配问题。通过经验研究,我们显示出一种健壮的方法对应用程序的有效性取决于(i)健壮的方法,(ii)数据实例和(iii)决策者和利益相关者的度量标准之间的相互作用。我们根据基础数据分布和性能指标来描述极值模型和概率模型的有效性。我们还将展示基础数据分布的知识如何指示根据指定的性能指标定制模型参数以生成更健壮的解决方案的方式。作为管理航空公司延误的一种操作方法,我们将飞行计划与中断管理相结合。我们专注于飞行计划的两个方面:(i)飞行速度的变化; (ii)故意延期起飞或延误,目的是在燃油成本和旅客延误成本之间取得最佳平衡。通过与多家航空公司的对话,我们对实践的现状进行了概述,并展示了如何通过整合实现更大的灵活性来管理中断。我们提出了结合飞行计划的飞机和乘客恢复模型,以及结合了飞行计划的飞机和乘客恢复模型。我们对一家欧洲航空公司提供的数据进行的计算实验表明,使用我们的方法可以减少47.2%-53.3%的旅客干扰。我们还讨论了所研究的两种机制的相对收益-飞行速度变化的收益和有意保持航班离场的收益,并在应用这些机制时显示出显着的协同作用。我们还表明,在我们的模型中可以获取有关系统延误和中断的更多信息,从而可以进一步节省成本并减少乘客延误。

著录项

  • 作者

    Marla Lavanya;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号