首页> 外文OA文献 >Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling
【2h】

Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

机译:使用密度泛函理论和微动力学模型了解NO分解和CO氧化的催化活性趋势

摘要

The main aim of this thesis is to understand the catalytic activity of transition metals and noble metals for the direct decomposition of NO and the oxidation of CO. The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Brønsted–Evans–Polanyi (BEP) relations for the activation barriers of dissociation of diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd and Pt are the best direct NO decomposition catalysts among the 3d, 4d, and 5d metals. We analyze the NO decomposition reaction in terms of the Sabatier analysis and a Sabatier–Gibbs-type analysis and obtain an activity trend in agreement with experimental results. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen. We calculate adsorption and transition state energies for the full CO oxidation reaction pathway by the use of DFT for a number of transition and noble metals; Pt, Pd, Cu, Ag and Au, and for various structures; closed packed surfaces, stepped surfaces, kinked surfaces, and a 12 atom corner model of a larger nanoparticle. We show obtained linear scaling relations between adsorption energies of reaction intermediates and BEP-relations between transition energies and adsorption energies. We establish a simple kinetic framework within the Sabatier analysis and obtain trends in catalytic activity based on the descriptors EO and ECO. We show that gold nanoparticles are optimal catalysts for low temperature CO oxidation and Pt closed packed surfaces are optimal for high temperature CO oxidation. We show that the change in catalytic activity of the elemental metals changes with the coordination number of atoms at the active sites. This effect is shown to vi be electronic in nature, as low coordinated metal atoms, which bind reactants most strongly, have the highest energy metal d states.
机译:本文的主要目的是了解过渡金属和贵金属对NO的直接分解和CO氧化的催化活性。化石燃料和可再生燃料燃烧形成的NOx仍然是一个主要的环境问题。通过将微动力学模型与密度泛函理论计算相结合,我们朝着合理化过渡金属催化剂催化NO分解的趋势迈出了一步。我们通过将阶梯状金属表面上的吸附能数据库与已知的Brønsted–Evans–Polanyi(BEP)关系用于双原子分子解离的激活壁垒相结合,建立了阶梯状过渡金属表面上直接NO分解反应的完整势能图。在阶梯状过渡金属和贵金属表面上。势能图直接指出了为什么Pd和Pt是3d,4d和5d金属中最好的直接NO分解催化剂。我们根据Sabatier分析和Sabatier-Gibbs型分析来分析NO分解反应,并获得与实验结果一致的活性趋势。我们专门说明了为什么在使用过渡金属表面催化直接NO分解中的关键问题是与原子氮相比原子氧的显着相对过量结合。我们通过使用DFT对许多过渡金属和贵金属进行计算,以计算整个CO氧化反应路径的吸附和过渡态能量; Pt,Pd,Cu,Ag和Au,以及各种结构;封闭的堆积表面,阶梯表面,扭结表面以及较大纳米粒子的12原子角模型。我们显示了反应中间体的吸附能与跃迁能和吸附能之间的BEP关系之间的线性比例关系。我们在Sabatier分析中建立了简单的动力学框架,并基于描述符EO和ECO获得了催化活性的趋势。我们表明,金纳米粒子是低温CO氧化的最佳催化剂,而Pt密堆积表面是高温CO氧化的最佳催化剂。我们表明,元素金属催化活性的变化随活性位点上原子配位数的变化而变化。已表明该效应本质上是电子的,因为与反应物最牢固结合的低配位金属原子具有最高的能量金属d态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号