首页> 外文OA文献 >Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins
【2h】

Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins

机译:坦桑尼亚克拉通中部及其南部和东部造山缘的地质年代学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geological mapping and zircon U–Pb/Hf isotope data from 35 samples from the central Tanzania Craton and surrounding orogenic belts to the south and east allow a revised model of Precambrian crustal evolution of this part of East Africa. The geochronology of two studied segments of the craton shows them to be essentially the same, suggesting that they form a contiguous crustal section dominated by granitoid plutons. The oldest orthogneisses are dated at ca. 2820 Ma (Dodoma Suite) and the youngest alkaline syenite plutons at ca. 2610 Ma (Singida Suite). Plutonism was interrupted by a period of deposition of volcano-sedimentary rocks metamorphosed to greenschist facies, directly dated by a pyroclastic metavolcanic rock which gave an age of ca. 2725 Ma. This is supported by detrital zircons from psammitic metasedimentary rocks, which indicate a maximum depositional age of ca. 2740 Ma, with additional detrital sources 2820 and 2940 Ma. Thus, 200 Ma of episodic magmatism in this part of the Tanzania Craton was punctuated by a period of uplift, exhumation, erosion and clastic sedimentation/volcanism, followed by burial and renewed granitic to syenitic magmatism.ududIn eastern Tanzania (Handeni block), in the heart of the East African Orogen, all the dated orthogneisses and charnockites (apart from those of the overthrust Neoproterozoic granulite nappes), have Neoarchaean protolith ages within a narrow range between 2710 and 2630 Ma, identical to (but more restricted than) the ages of the Singida Suite. They show evidence of Ediacaran “Pan-African” isotopic disturbance, but this is poorly defined. In contrast, granulite samples from the Wami Complex nappe were dated at ca. 605 and ca. 675 Ma, coeval with previous dates of the “Eastern Granulites” of eastern Tanzania and granulite nappes of adjacent NE Mozambique. To the south of the Tanzania Craton, samples of orthogneiss from the northern part of the Lupa area were dated at ca. 2730 Ma and clearly belong to the Tanzania Craton. However, granitoid samples from the southern part of the Lupa “block” have Palaeoproterozoic (Ubendian) intrusive ages of ca. 1920 Ma. Outcrops further south, at the northern tip of Lake Malawi, mark the SE continuation of the Ubendian belt, albeit with slightly younger ages of igneous rocks (ca. 1870–1900 Ma) which provide a link with the Ponte Messuli Complex, along strike to the SE in northern Mozambique.ududIn SW Tanzania, rocks from the Mgazini area gave Ubendian protolith ages of ca. 1980–1800 Ma, but these rocks underwent Late Mesoproterozoic high-grade metamorphism between 1015 and 1040 Ma. One granitoid gave a crystallisation age of ca. 1080 Ma correlating with known Mesoproterozoic crust to the east in SE Tanzania and NE Mozambique. However, while the crust in the Mgazini area was clearly one of original Ubendian age, reworked and intruded by granitoids at ca. 1 Ga, the crust of SE Tanzania is a mixed Mesoproterozoic terrane and a continuation from NE Mozambique. Hence the Mgazini area lies at the edge of the Ubendian belt which was re-worked during the Mesoproterozoic orogen (South Irumide belt), providing a further constraint on the distribution of ca. 1 Ga crust in SE Africa.ududHf data from near-concordant analyses of detrital zircons from a sample from the Tanzania Craton lie along a Pb-loss trajectory (Lu/Hf = 0), extending back to ∼3.9 Ga. This probably represents the initial depleted mantle extraction event of the cratonic core. Furthermore, the Hf data from all igneous samples, regardless of age, from the entire study area (including the Neoproterozoic granulite nappes) show a shallow evolution trend (Lu/Hf = 0.028) extending back to the same mantle extraction age. This implies the entire Tanzanian crust sampled in this study represents over 3.5 billion years of crustal reworking from a single crustal reservoir and that the innermost core of the Tanzanian Craton that was subsequently reworked was composed of a very depleted, mafic source with a very high Lu/Hf ratio. Our study helps to define the architecture of the Tanzanian Craton and its evolution from a single age-source in the early Eoarchaean.
机译:来自坦桑尼亚克拉通中部及南部和东部周围造山带的35个样品的地质制图和锆石U–Pb / Hf同位素数据,为东非这一部分的前寒武纪地壳演化模型提供了修正。研究的克拉通的两个部分的地质年代学表明它们基本相同,这表明它们形成了一个以花岗岩类云母为主的连续地壳剖面。最古老的正片麻岩的年代大约为2820 Ma(Dodoma套件)和最年轻的碱性正长岩Plutons约在。 2610 Ma(Singida Suite)。火山沉积沉积期变质为绿片岩相,中断了岩屑作用,其直接年代为火山碎屑裂变火山岩,其年龄大约为。 2725马。叠层沉积沉积岩中的碎屑锆石支持了这一点,这表明最大沉积年龄约为。 2740 Ma,另外还有碎屑源2820和2940 Ma。因此,坦桑尼亚克拉通部分地区的200 Ma偶发性岩浆作用被隆起,发掘,侵蚀和碎屑沉积/火山作用,随后埋葬并重新形成花岗质到共生岩浆作用。 ud ud在坦桑尼亚东部(Handeni块),在东非造山带的心脏地带,所有已陈旧的斜长片麻岩和晚霞石(除了上推新元古代粒麻岩外),都在2710至2630 Ma的狭窄范围内具有新古生界的原生石年龄,与(小于)的年龄。他们显示出Ediacaran“泛非”同位素干扰的证据,但这定义不清。相比之下,来自Wami Complex尿布的花岗石样品的日期大约为。 605和ca. 675 Ma,与坦桑尼亚东部“东部花岗岩”和邻近莫桑比克NE的花岗岩推土带的先前日期相近。在坦桑尼亚克拉通的南部,来自卢帕地区北部的直立性片麻岩样品的年代大约为。 2730 Ma,显然属于坦桑尼亚克拉通。但是,来自卢帕“地块”南部的花岗岩样品具有古元古代(乌本店)侵入年龄。 1920年南部的露头位于马拉维湖的北端,标志着乌本地亚带的东南延伸,尽管火成岩年龄稍小(约1870年至1900 Ma),这提供了与庞特梅苏里复合体之间的联系,并一直延伸至 ud ud在坦桑尼亚西南部,来自Mgazini地区的岩石使乌本德人的原石时代大约为。 1980–1800 Ma,但这些岩石在1015至1040 Ma之间经历了晚中生代高级变质作用。一种花岗石的结晶年龄约为。 1080 Ma与东南坦桑尼亚和莫桑比克东北部已知的中元古代地壳相关。然而,尽管Mgazini地区的地壳显然是原始的乌本德时代之一,但经过重塑并在大约20世纪初被花岗岩侵入。坦桑尼亚东南部的地壳是1 Ga,是混合的中元古代地层,是莫桑比克NE的延续。因此,Mgazini地区位于中元古生代造山带(South Irumide地带)期间经过重新加工的Ubendian地带的边缘,这进一步限制了ca的分布。 1非洲东南部的Ga壳。来自坦桑尼亚Craton样品的碎屑锆石的近一致分析中的数据沿PB损失轨迹(Lu / Hf = 0)分布,延伸至3.9 Ga。可能代表克拉通岩心最初的地幔耗尽事件。此外,来自整个研究区(包括新元古代粒状质尿布)的所有火成岩样品的Hf数据(不论年龄)都显示出一个浅的演变趋势(Lu / Hf = 0.028),可以追溯到相同的地幔提取年龄。这意味着在本研究中采样的整个坦桑尼亚地壳代表着从单个地壳储层中进行了超过35亿年的地壳再造,而随后再造的坦桑尼亚克拉通的最内层核心是由贫乏的镁铁质岩浆组成的,其Lu值很高。 / Hf比。我们的研究有助于确定坦桑尼亚克拉通的体系结构,以及其从欧陶世早期的单一年代起源演变而来。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号