首页> 外文OA文献 >Generation of osteoinductive grafts by three-dimensional perfusion culture of human bone marrow cells into porous ceramic scaffolds
【2h】

Generation of osteoinductive grafts by three-dimensional perfusion culture of human bone marrow cells into porous ceramic scaffolds

机译:通过人骨髓细胞三维灌注培养成多孔陶瓷支架产生骨诱导移植物

摘要

The main aims of this thesis were (i) to identify and develop a system that could beudreproducibly used to streamline manufacture of osteoinductive grafts based on human bone marrowudstromal cells (BMSC) in the context of regenerative medicine, (ii) to characterize the developedudsystem in order to identify key elements responsible for its reproducible and efficient performance,udand (iii) to extend its use to a sheep cell source, thus opening the way to test the osteoinductivity ofudorthotopic implants in a large animal model.udBone Marrow Stromal Cells (BMSC), which are typically defined by their capacity to adhereudon plastic [1] and form a fibroblastic colony (CFU-f) [2], represent a very low fraction (approximatelyud0.01%) among the nucleated cells of the bone marrow. Therefore, to obtain a sufficient number ofudcells for bone tissue engineering applications, BMSC are typically first selected and expanded inudmonolayer (2D) prior to loading into 3D scaffolds. However, 2D-expansion causes BMSC toudprogressively lose their early progenitor properties and differentiation potential [3-5], and to decreaseudtheir capability to form colonies and to induce bone tissue formation upon ectopic implantation [3],udplacing several potential limits on their clinical utility. To bypass the process of 2D-expansion and itsudassociated limitations, we used an innovative bioreactor-based approach to seed, expand, anduddifferentiate BMSC directly in a 3D ceramic scaffold [6]. Nucleated cells, freshly isolated from a boneudmarrow aspirate, were introduced into the bioreactor system and perfused through the pores of 3Dudceramics for five days, then further cultured under perfusion for an additional two weeks. Using theuddeveloped procedure, BMSC could be seeded and extensively expanded within the 3D environment ofudthe ceramic pores. Interestingly, we found that the 3D-generated constructs contained bothudhemopoietic cells and BMSC, whose relative fractions could be modulated by appropriate mediaudsupplements, and that a consistent fraction of expanded BMSC was clonogenic. In contrast, followingudthe typical 2D-expansion, cells of the hemopoietic lineage could not be maintained, and, consistentlyudwith previous studies, only a minor fraction of expanded BMSC was still clonogenic. When constructsudwere ectopically implanted in nude mice, those engineered in the bioreactor reproducibly generatedudbone tissue that was uniformly distributed throughout the scaffold volume and filled up to 60% of theudceramic pores. In marked contrast, when similar numbers of 2D-expanded BMSC were loaded intoudceramic scaffolds and implanted, bone was infrequently generated, and even in the mostududosteoinductive constructs, it was localized to peripheral regions, filling only 10% of the ceramic poreudvolume [6].udConsidering the need of reproducibility or at least of predictability in the osteoinductive abilityudof the constructs for their standardized clinical use, in order to validate the possibility of extending theuduse of the developed bioreactor-based approach for generating osteoinductive grafts of clinicallyudrelevant size, we then investigated whether a minimum cell density was required for the reproducibleudbone tissue formation. Based on the established association between the higher clonogenicity ofudBMSC expanded in the 3D-system and the more reproducible and extensive osteoinductivity of theudresulting constructs, as compared to those based on 2D-expanded BMSC, we demonstrated thatudpresence or absence of bone in the constructs following ectopic implantation is related not to the totaludnumber of implanted BMSC, but to the number of CFU-f present in the construct at the time ofudimplantation. In particular, we identified an apparent threshold in the amount of CFU-f discriminatingudbetween osteoinductive and not osteoinductive constructs.udThe developed bioreactor-based approach has been validated in a heterotopic model. Beforeudenvisioning a clinical trial in human, a study in a large animal model is needed to validate the safetyudand the surgical feasibility of the overall procedure. Thus, in the perspective of testing our noveludapproach for repairing experimental bone defects in a sheep model, it was first necessary to validateudour system using ovine BMSC. We demonstrated that osteoinductive constructs can be generated byudperfusing 3D ceramic scaffolds with the nucleated cell fraction of ovine bone marrow aspirates [7].udOngoing studies in the context of an EU-funded Project are aimed at testing the capability of theudgenerated constructs to repair large bone defects in sheep (i.e. defects around titanium implantsudinserted into trabecular bone of the proximal humerus, and postero-lateral spinal fusion in lumbarregion).
机译:本论文的主要目的是(i)在再生医学的背景下,确定并开发一种系统,该系统可以不可复制地用于简化基于人骨髓基质细胞(BMSC)的骨诱导移植物的生产,(ii)对已开发的 udsystem进行表征,以找出导致其可重复和高效运行的关键因素, udand(iii)将其用途扩展到绵羊细胞来源,从而为测试大型动物的 udorthotopic植入物的骨诱导能力开辟了道路 udm骨髓基质细胞(BMSC)通常由其粘附 udon塑料[1]并形成成纤维细胞集落(CFU-f)[2]的能力来定义,代表非常低的比例(约 ud0。 01%)在骨髓有核细胞中。因此,为了获得足够数量的骨细胞用于骨组织工程应用,通常首先选择BMSC并在单层(2D)中进行扩展,然后再加载到3D支架中。然而,二维扩展导致BMSC逐渐失去其早期祖细胞特性和分化潜能[3-5],并降低其异位植入后形成菌落和诱导骨组织形成的能力[3],取代了几种潜能。限制其临床实用性。为了绕过2D扩展过程及其相关限制,我们使用了一种基于生物反应器的创新方法,直接在3D陶瓷支架中对BMSC进行播种,扩展和去分化[6]。从骨骨髓抽吸物中新鲜分离的有核细胞被引入生物反应器系统,并通过3D uderamics的孔灌注五天,然后在灌注下进一步培养两周。使用开发的程序,BMSC可以在陶瓷孔的3D环境中进行播种和广泛扩展。有趣的是,我们发现3D生成的构建体同时包含 udhemopoietic细胞和BMSC,它们的相对分数可以通过适当的培养基 udsupplements调节,并且一致的扩展BMSC分数是克隆形成的。相反,在典型的2D扩增后,不能维持造血谱系的细胞,并且与以前的研究一致,仅一小部分扩增的BMSC仍是克隆形成的。将构建体异位植入裸鼠后,在生物反应器中工程化的构建体可重现地生成 udbone组织,该组织均匀分布在整个支架中,并填充了多达60%的 uderamic孔。与之形成鲜明对比的是,当将类似数量的2D扩展BMSC装入陶瓷支架中并植入时,很少会生成骨骼,即使在大多数 u u studinosinative结构中,骨骼也只能定位在周围区域,仅占骨骼的10%。陶瓷孔 udvolume [6]。 ud考虑到骨诱导能力的可重复性或至少可预测性的要求,将其用于标准临床用途的构造物,以验证是否有可能扩展基于生物反应器的 udus产生临床上不相关大小的骨诱导移植物的方法,然后我们研究了可再现的 udbone组织形成是否需要最小细胞密度。与基于2D扩展的BMSC相比,在3D系统中扩展的 udBMSC的更高克隆性与该 ultulting的构建体具有更高的可再现性和更广泛的骨诱导性之间建立的联系,我们证明了 dBMSC的不存在或不存在异位植入后构建体中的骨骼与植入的BMSC总数无关,而与植入时植入体中存在的CFU-f数量有关。特别是,我们确定了在骨诱导性和非骨诱导性结构之间区分/识别CFU-f数量的明显阈值。 ud已开发的基于生物反应器的方法已在异位模型中得到验证。在设想人类的临床试验之前,需要在大型动物模型中进行研究,以验证整个程序的安全性和手术可行性。因此,从测试我们的新型 udapp方法修复绵羊模型中的实验性骨缺损的角度来看,首先有必要使用绵羊BMSC验证 udour系统。我们证明了可以通过 3D陶瓷支架与绵羊骨髓穿刺物的有核细胞部分的浸入来产生骨诱导性构建体[7]。 ud在欧盟资助的项目中正在进行的研究旨在测试产生的能力用于修复绵羊大骨缺损的结构(例如,钛植入物周围的缺损插入到肱骨近端的小梁骨中,以及腰椎区域的后外侧脊柱融合术)。

著录项

  • 作者

    Braccini Alessandra;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号