首页> 外文OA文献 >Resource-efficient algorithms and circuits for highly-scalable BMI channel architectures
【2h】

Resource-efficient algorithms and circuits for highly-scalable BMI channel architectures

机译:用于高度可扩展的BmI信道架构的资源有效算法和电路

摘要

The study of the human brain has for long fascinated mankind. This organ that controls all cognitive processes and physical actions remains, to this day, among the least understood biological systems. Several billions of neurons form intricate interconnected networks communicating information through through complex electrochemical activities. Electrode arrays, such as for EEG, ECoG, and MEAs (microelectrode arrays), have enabled the observation of neural activity through recording of these electrical signals for both investigative and clinical applications. Although MEAs are widely considered the most invasive such method for recording, they do however provide highest resolution (both spatially and temporally). ududDue to close proximity, each microelectrode can pick up spiking activity from multiple neurons. This thesis focuses on the design and implementation of novel circuits and systems suitable for high channel count implantable neural interfaces. Implantability poses stringent requirements on the design, such as ultra-low power, small silicon footprint, reduced communication bandwidth and high efficiency to avoid information loss. The information extraction chain typically involves signal amplification and conditioning, spike detection, and spike sorting to determine the spatial and time firing pattern of each neuron. ududThis thesis first provides a background to the origin and basic electrophysiology of these biopotential signals followed by a thorough review of the relevant state-of-the circuits and systems for facilitating the neural interface.ududWithin this context, novel front-end circuits are presented for achieving resource-constrained biopotential amplification whilst additionally considering the signal dynamics and realistic requirements for effective classification. Specifically, it is shown how a band-limited biopotential amplifier can reduce power requirements without compromising detectability. Furthermore through the development of a novel automatic gain control for neural spike recording, the dynamic range of the signal in subsequent processing blocks can be maintained in multichannel systems. This is particularly effective if now considering systems that no longer requiring independent tuning of amplification gains for each individual channel. This also alleviates the common requirement to over-spec the resolution in data conversion therefore saving power, area and data capacity.ududDealing with basic spike detection and feature extraction, a novel circuit for maxima detection is presented for identifying and signalling the onset of spike peaks and troughs. This is then combined with a novel non-linear energy operator (NEO) preprocessor and applied to spike detection. This again contributes to the general theme of achieving a calibration-free multi-channel system that is signal-driven and adaptive. Another original contribution herein includes a spike rate encoder circuit suitable for applications that are not are not affected by providing multi-unit responses.ududFinally, spike sorting (feature extraction and clustering) is examined. A new method for feature extraction is proposed based on utilising the extrema of the first and second derivatives of the signal. It is shown that this provides an extremely resource-efficient metric than can achieve noise immunity than other methods of comparable complexity. Furthermore, a novel unsupervised clustering method is proposed which adaptively determines the number of clusters and assigns incoming spikes to appropriate cluster on-the-fly. In addition to high accuracy achieved by the combination of these methods for spike sorting, a major advantage is their low-computational complexity that renders them readily implementable in low-power hardware.
机译:对人类大脑的研究使人类长期着迷。迄今为止,控制所有认知过程和身体动作的这种器官仍处于人们最不了解的生物系统之中。数十亿个神经元形成复杂的相互连接的网络,通过复杂的电化学活动传达信息。电极阵列,例如用于EEG,ECoG和MEA(微电极阵列)的电极阵列,已通过记录这些电信号用于研究和临床应用,从而能够观察神经活动。尽管MEA被普遍认为是这种记录方法最具侵入性的方法,但是它们确实提供了最高的分辨率(在空间和时间上)。 ud ud由于非常接近,每个微电极都可以吸收来自多个神经元的尖峰活动。本文着重于设计和实现适用于高通道数植入式神经接口的新型电路和系统。可植入性对设计提出了严格的要求,例如超低功耗,较小的硅片占位面积,减小的通信带宽和高效率,以避免信息丢失。信息提取链通常涉及信号放大和调节,尖峰检测和尖峰分类,以确定每个神经元的空间和时间触发模式。 ud ud本论文首先为这些生物电势信号的起源和基本电生理学提供了背景,然后对有关促进神经接口的电路和系统的相关状态进行了全面的回顾。 ud ud提出了端电路以实现资源受限的生物电势放大,同时还考虑了信号动力学和有效分类的实际要求。具体地,示出了带限生物电势放大器如何能够在不损害可检测性的情况下降低功率需求。此外,通过开发用于神经尖峰记录的新型自动增益控制,可以在多通道系统中保持后续处理模块中信号的动态范围。如果现在考虑不再需要为每个单独的通道独立调节放大增益的系统,这将特别有效。这也减轻了对数据转换中过高分辨率的普遍要求,从而节省了功率,面积和数据容量。 ud ud通过基本尖峰检测和特征提取处理,提出了一种用于最大值检测的新颖电路,用于识别和发信号高峰和低谷。然后将其与新颖的非线性能量算子(NEO)预处理器结合起来,并应用于峰值检测。这再次有助于实现信号驱动和自适应的免校准多通道系统的总主题。本文的另一个原始贡献包括适用于不受多单元响应影响的应用的尖峰速率编码器电路。最后,检查尖峰排序(特征提取和聚类)。提出了一种基于信号一阶和二阶导数极值的特征提取新方法。结果表明,与其他可比较复杂性的方法相比,它提供了一种极高的资源效率指标,可以实现抗扰度。此外,提出了一种新颖的无监督聚类方法,该方法自适应地确定聚类的数量,并动态地将传入的尖峰分配给适当的聚类。这些方法的组合不仅可以实现尖峰分类的高精度,而且其主要优点是计算复杂度低,这使得它们很容易在低功耗硬件中实现。

著录项

  • 作者

    Paraskevopoulou Sivylla;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号