首页> 外文OA文献 >Experimental Studies of the Interaction of Radiatively Cooled Supersonic Plasma Jets with Ambient Plasma
【2h】

Experimental Studies of the Interaction of Radiatively Cooled Supersonic Plasma Jets with Ambient Plasma

机译:辐射冷却超音速等离子体射流与环境等离子体相互作用的实验研究

摘要

We present the design, development and characterisation of an experimental platform for studying astrophysically relevant plasma jet interactions with ambient plasma. Jet and ambient plasmas are formed during the z-pinch discharge of a 1.4MA, 240ns current pulse delivered by Imperial College London's MAGPIE generator. Jets are of centimetre length and microsecond lifetime but have sufficiently large Reynolds and Péclet numbers (> 10,000) to permit well-scaled comparison with non-magnetised astrophysical jets, including the bipolar outflows of protostars. Jet densities are of order 10e19 particles per cubic centimetre, and density ratios (jet density/ambient density) between 1 and 10, are demonstrated. Jets are formed by ablation of micrometer thickness aluminium (Al) or tungsten (W) wires arranged in the conical or radial wire array z-pinch geometries. Ambient plasmas are formed during the same current pulse by ablation of wires in the cylindrical wire array geometry, or the surface of a 14 micrometre thickness, 40mm diameter aluminium foil. Leading shock features launched by conical wire array jet material into foil-driven plasmas demonstrate effective adiabatic indices of 1.4 and 1.2 for Al/Al and W/Al interactions respectively. Radial wire arrays are observed to drive higher Mach number interactions than those of conical wire arrays, with upstream Mach numbers M > 3.5 and M > 1.7 respectively. Instability growth is observed during radial wire array jet experiments along the leading shocks and jet edges, on timescales typical of Rayleigh-Taylor and Kelvin-Helmholtz instabilities under our experimental conditions. This work complements and extends current numerical modelling of non-magnetised astrophysical jet propagation, and offers a body of controlled, repeatable experimental data for future code validation work.
机译:我们目前的设计,开发和表征的实验平台,用于研究天体相关等离子体射流与环境等离子体的相互作用。伦敦帝国理工学院的MAGPIE发生器发出的1.4MA,240ns电流脉冲在Z夹放电期间形成喷射和周围等离子体。射流的长度为厘​​米,寿命为微秒,但雷诺数和佩克莱特数足够大(> 10,000),可以与非磁化天体物理射流进行良好比例的比较,包括原恒星的双极流出。射流密度为每立方厘米10e19颗粒,并且已证明密度比(射流密度/环境密度)在1和10之间。射流是通过烧蚀以圆锥形或放射状线阵列z捏合几何形状排列的微米级厚度的铝(Al)或钨(W)线形成的。通过消融圆柱状导线阵列几何形状中的导线或直径14微米,直径40mm的铝箔的表面,在同一电流脉冲期间形成环境等离子体。圆锥形线阵列喷射材料向箔片驱动的等离子体发射的主要冲击特征表明,对于Al / Al和W / Al相互作用,有效绝热指数分别为1.4和1.2。观察到径向线阵列比锥形线阵列驱动更高的马赫数相互作用,上游马赫数分别为M> 3.5和M> 1.7。在我们的实验条件下,在瑞利-泰勒和开尔文-亥姆霍兹不稳定性的典型时标上,在径向线阵列射流实验中,沿着前沿冲击和射流边缘观察到了不稳定性的增长。这项工作补充并扩展了非磁化天体物理射流传播的当前数值模型,并为将来的代码验证工作提供了一组受控的,可重复的实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号