首页> 外文OA文献 >The industrial metabolism of plastics : analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics
【2h】

The industrial metabolism of plastics : analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics

机译:塑料的工业代谢:塑料生命周期中的材料流动,能量消耗和二氧化碳排放分析

摘要

This thesis deals with the question: Which are promising options for decreasing material consumption, energy consumption and CO2 emissions in the lifecycle of plastics?udThe research described in this thesis mainly focuses on measures that change the material system, i.e. measures that change the pattern of material flows through society.udBy conducting an integral analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics, it is possible to compare different measures at different stages in the life-cycle of a material or product, up and down the product-chain. In this thesis measures to replace feedstocks (changing production routes) are compared with measures for using alternative plastic types (material substitution) and measures for using alternative processes for plastic waste management (increasing materials recycling). A calculation method is developed and used to estimate the impact of the different measures on greenhouse gas emissions and fossil fuels consumption over the whole lifecycle of plastics.ududThe research that underlies this thesis leads to the following conclusions:ud* Changes in steamcracker feedstocks (ethane, LPG, gasoil and naphtha) only marginally influence total fossil fuels and feedstocks consumption and CO2 emissions. Higher reductions can be achieved by using new processing routes that use biomass as feedstock, like biomass flash pyrolysis and the methanol-to-olefins process combined with methanol production from biomass. Especially a combination of these two routes turns out to be capable of inducing large reductions.ud* Because substitution potentials between different plastic types are limited and differences in energy use and CO2 emissions for producing different plastic types are relatively small, no large reductions are to be achieved by substitution between plastics types (unless this would enable product changes increasing material efficiency).ud* Landfilling and incineration of plastic waste do not allow simultaneous reductions in fossil fuels and feedstocks consumption on the one hand and CO2 emissions on the other hand. Although it is a cheap and relatively easily applicable option, increasing the share of waste incineration is no valuable option, because it largely increases overall CO2 emissions.ud* Largest reductions of CO2 emissions and fossil fuels consumption by measures aiming at enhanced waste management are achieved by increasing the contribution of mechanical recycling, selective dissolution or blast furnace injection. Effort should be made to clear away the obstacles that limit the share of mechanical recycling, by developing appropriate blending and separation techniques.ud* We estimate that structural changes in the lifecycle of plastics in The Netherlands can lead to a reduction in the consumption of fossil fuels of up to 60% and a CO2 emission reduction of up to 30%. These reductions can be achieved by large scale use of biomass as feedstock for the production of plastics, possibly combined with an increased share of plastic waste recycling. Realisation of these options would, however, be accompanied by a cost increase of the total plastics lifecycle of about 20%.
机译:本文针对以下问题:减少塑料生命周期中的材料消耗,能耗和CO2排放的哪些选择是可行的? ud本文所描述的研究主要集中于改变材料系统的措施,即改变形态的措施。 ud通过对塑料生命周期中的物质流量,能耗和CO2排放量进行整体分析,可以比较材料或产品生命周期中不同阶段,不同时期和不同时期的不同措施。在产品链中。在这篇论文中,将替代原料的措施(改变生产路线)与使用替代塑料类型的措施(材料替代)和使用替代工艺进行塑料废物管理的措施(增加材料回收)进行了比较。开发了一种计算方法,用于估算不同措施对塑料整个生命周期中温室气体排放和化石燃料消耗的影响。 ud ud本论文的基础研究得出以下结论: ud *汽化器的原料(乙烷,LPG,粗柴油和石脑油)仅对化石燃料和原料的总消耗量以及二氧化碳排放量产生很小的影响。通过使用以生物质为原料的新工艺路线,例如生物质快速热解和甲醇制烯烃工艺,再结合生物质生产甲醇,可以实现更高的减排量。尤其是,这两种途径的组合能够引起大幅度的减少。 ud *由于不同塑料类型之间的替代潜力有限,并且生产不同塑料类型所消耗的能源和二氧化碳排放量相对较小,因此没有大的减少 ud *塑料垃圾的填埋和焚化一方面不能同时减少化石燃料和原料的消耗,另一方面却减少了CO2的排放,从而可以通过在塑料类型之间进行替代来实现(除非这将使产品变化提高材料效率)。手。尽管这是一种便宜且相对容易应用的选择,但是增加废物焚化的份额并不是有价值的选择,因为这会大大增加总体的二氧化碳排放量。 ud *通过旨在加强废物管理的措施,最大程度地减少了二氧化碳排放量和化石燃料的消耗通过增加机械回收,选择性溶解或高炉喷射的贡献来实现。通过开发适当的混合和分离技术,应努力消除限制机械回收份额的障碍。 ud *我们估计荷兰的塑料生命周期中的结构变化可以减少塑料的消费量。化石燃料可高达60%,二氧化碳排放量可降低30%。这些减少可以通过大量使用生物质作为生产塑料的原料来实现,并可能与增加的塑料废料回收份额相结合。然而,这些选择的实现将伴随整个塑料生命周期的成本增加约20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号