首页> 外文OA文献 >Sediment basin modeling through GOCE gradients controlled by thermo-isostatic constraints
【2h】

Sediment basin modeling through GOCE gradients controlled by thermo-isostatic constraints

机译:通过热等静约束控制的GOCE梯度进行沉积盆地模拟

摘要

Exploration of geodynamic and tectonic structures through gravity methods has experienced an increased interest in the recent years thank’s to the possibilities offered by satellite gravimetry (e.g. GOCE). The main problem with potential field methods is the non-uniqueness of the underground density distributions that satisfy the observed gravity field. In terrestrial areas with scarce geological and geophysical information, valid constraints to the density model could be obtained from the application of geodynamic models. In this contribution we present the study of the gravity signals associated to the thermo-isostatic McKenzie-model (McKenzie, 1978) that predicts the development of sedimentary basins from the stretching of lithosphere. This model seems to be particularly intriguing for gravity studies as we could obtain estimates of densities and thicknesses of crust and mantle before and after a rifting event and gain important information about the time evolution of the sedimentary basin. The McKenzie-model distinguishes the rifting process into two distinct phases: a syn-rift phase that occurs instantly and is responsible of the basin formation, the thinning of lithosphere and the upwelling of hot asthenosphere. Then a second phase (post-rift), that is time dependent, and predicts further subsidence caused by the cooling of mantle and asthenosphere and subsequently increase in rock density. From the application of the McKenzie-model we have derived density underground distributions for two scenarios: the first scenario involves the lithosphere density distribution immediately after the stretching event; the second refers to the density model when thermal equilibrium between stretched and unstretched lithospheres is achieved. Calculations of gravity anomalies and gravity gradient anomalies are performed at 5km height and at the GOCE mean orbit quota (250km). We have found different gravity signals for syn-rift (gravimetric maximum) and post-rift (gravimetric minimum) scenarios and that satellite measurements are sufficiently precise to discriminate between them. The McKenzie-model is then applied to a real basin in Africa, the Benue Trough, which is an aborted rift thatudseems to be particularly adapt to be studied with satellite gravity techniques. McKenzie D., 1978, Some remarks on the development of sedimentary basins, Earth and Planetary Science Letters, 40, 25-32
机译:近年来,借助重力法(例如GOCE)提供的可能性,通过重力方法探索地球动力学和构造结构的兴趣日益增加。势场法的主要问题是满足观测重力场的地下密度分布的非唯一性。在缺乏地质和地球物理信息的陆地区域,可以通过应用地球动力学模型获得对密度模型的有效约束。在这项贡献中,我们介绍了与热等静力麦肯锡模型(McKenzie,1978)相关的重力信号的研究,该模型通过岩石圈的伸展来预测沉积盆地的发育。该模型似乎对重力研究特别感兴趣,因为我们可以获得裂谷事件前后的地壳和地幔密度和厚度的估计值,并获得有关沉积盆地时间演变的重要信息。 McKenzie模型将裂谷作用过程分为两个不同的阶段:即刻裂陷阶段,该阶段即刻发生,并与盆地形成,岩石圈变薄和热软流圈上升有关。然后是第二阶段(裂谷后),该阶段是时间相关的,并预测由于地幔和软流层的冷却以及岩石密度的增加而引起的进一步沉降。通过McKenzie模型的应用,我们得出了两种情况下的地下密度分布:第一种情况涉及拉伸事件刚发生后的岩石圈密度分布;第二个是指在拉伸和未拉伸岩石圈之间达到热平衡时的密度模型。重力异常和重力梯度异常的计算是在5 km高和GOCE平均轨道定额(250 km)处进行的。我们发现,对于同心分离(最大重力)和后分离(最小重力)场景,存在不同的重力信号,并且卫星测量值足够精确以区分它们。然后,将McKenzie模型应用于非洲的一个真正盆地,即Benue槽,这是一条破裂的裂谷,它似乎特别适合于使用卫星重力技术进行研究。 McKenzie D.,1978,关于沉积盆地发展的一些评论,《地球与行星科学快报》,第40期,第25-32页

著录项

  • 作者

    Pivetta T.; Braitenberg C;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号