首页> 外文OA文献 >Gold nanoparticles coated by mixtures of ligands: a basic study and their functionalization with gadolinium complexes
【2h】

Gold nanoparticles coated by mixtures of ligands: a basic study and their functionalization with gadolinium complexes

机译:配体混合物包覆的金纳米颗粒:基础研究及其与with配合物的功能化

摘要

In the last twenty years, gold nanoparticles (AuNPs) have received a tremendous attention for applications in the biomedical field for diagnosis, therapy, imaging and drug delivery. Among the numerous studies on AuNPs a huge interest was focused on understanding and controlling the properties of these hybrid organic-inorganic nanoparticles. This studies are pushed by the fact that AuNPs can be easily synthesized with a good control over the size, shape, dispersity and composition. Moreover, AuNPs can be protected by different ligands which influence their properties and their interaction with the environment. Indeed, considering that in most cases AuNPs present on the surface mixtures of ligands, it is very important to know not only the relative amount of ligands present into the monolayer, but also how mixtures of ligands can organize on the surface of the gold core.This thesis is focused on two projects. The first one deals with the study of the morphology of mixed monolayers composed of hydrogenated and fluorinated ligands of different lengths and bulkiness. Previously, our group have demonstrated through ESR experiments that mixtures of immiscible ligands phase segregate forming domains. It was found that the shape of these domains depends on the dimension of the gold core, on the relative length and ratio between the ligands and on the ligand composition. The objective of this PhD research project is to study in depth the organization of mixed monolayers protected gold nanoparticles, in particular using blends of hydrogenated and fluorinated thiols. To this aim, we have designed and synthesized AuNPs protected by three classes of binary mixtures of ligands: blend of thiols having different length (NPs-C12/F6 and NPs-C16/F6); ligands having the same length (NPs-C12/F10 and NPs-C8/F6) and nanoparticles protected by ligands of different length and similar bulkiness (NPs-brC12/F6). We have obtained mixed monolayers with different compositions, varying the initial ratio between the two ligands. For all this nanoparticles we have recorded different 19F-NMR experiments. The chemical shift variation with the nature of ligands and the monolayer composition reveal to be very diagnostic. The obtained results were supported by in silico experiments, in collaboration with the group of dott. P. Posocco, prof. S. Pricl and prof. M. Fermeglia of the University of Trieste, in order to predict the shape of the domains of each type of nanoparticles. The second project is focused on AuNPs for MRI applications. Nuclear magnetic resonance is a powerful technique for investigating physiopathology in vitro and in vivo. It is a non-invasive technique and permit to obtain images using non-radioactive tracers. There are two main classes of materials which have been developed for this technique: compounds to promote the relaxivity of water protons like gadolinium chelates or iron oxide particles (SPIOs) used for 1H-MRI and fluorinated compounds (PFCs) used for 19F-MRI. Previously in our group have been reported AuNPs protected by water soluble fluorinated ligands for 19F-MRI applications. This nanoparticles present suitable features for MRI and are also able to bind hydrophobic molecules allowing their applications for imaging and drug delivery. We have decided to improve the characteristics of these nanoparticles in order to have smaller T1 relaxation time and consequently better performances in the magnetic resonance field. In this thesis, we will present in Chapter 4 new preliminary results about three classes of AuNPs for MRI applications: AuNPs protected by fluorinated ligands, AuNPs protected by ligands which complex the Gd (III) and AuNPs protected by fluorinated ligands able to bind Gd(III). Additionally, we have designed and synthesized new thiols used for the synthesis of AuNPs suited for 1H-MRI and 19F-MRI.
机译:在过去的二十年中,金纳米颗粒(AuNPs)在生物医学领域的诊断,治疗,成像和药物输送领域的应用受到了极大的关注。在众多关于AuNPs的研究中,巨大的兴趣集中在理解和控制这些杂化有机-无机纳米粒子的特性上。可以容易地合成AuNPs,并且可以很好地控制其大小,形状,分散性和组成,从而推动了这项研究。此外,AuNPs可以被不同的配体保护,这些配体会影响其性能以及与环境的相互作用。确实,考虑到在大多数情况下,AuNPs存在于配体的表面混合物中,不仅要知道存在于单层中的配体的相对数量,而且要知道配体的混合物如何在金核表面上组织,这一点非常重要。本文主要针对两个项目。第一个涉及由不同长度和体积的氢化和氟化配体组成的混合单层的形态研究。以前,我们的小组通过ESR实验证明了不混溶配体的混合物会相分离形成结构域。已经发现这些域的形状取决于金核的尺寸,取决于配体之间的相对长度和比例以及取决于配体组成。该博士研究项目的目的是深入研究混合单层保护的金纳米颗粒的组织,特别是使用氢化和氟化硫醇的混合物。为此,我们设计并合成了由三类配体的二元混合物保护的AuNPs:具有不同长度的硫醇混合物(NPs-C12 / F6和NPs-C16 / F6);具有相同长度的配体(NPs-C12 / F10和NPs-C8 / F6)以及受不同长度和相似体积的配体保护的纳米颗粒(NPs-brC12 / F6)。我们已经获得了具有不同组成的混合单层,改变了两个配体之间的初始比例。对于所有这些纳米粒子,我们记录了不同的19F-NMR实验。化学位移随配体和单层组合物的性质的变化显示出非常诊断性。与dott小组合作,通过计算机模拟实验支持了获得的结果。 P. Posocco教授S. Pricl和教授。的里雅斯特大学的M. Fermeglia,以便预测每种类型的纳米颗粒的畴的形状。第二个项目侧重于用于MRI应用的AuNP。核磁共振是一种用于研究体内和体外生理病理的强大技术。这是一种非侵入性技术,可以使用非放射性示踪剂获取图像。已为该技术开发了两类主要材料:促进水质子弛豫的化合物,如用于1H-MRI的g螯合物或氧化铁颗粒(SPIO),以及用于19F-MRI的氟化化合物(PFC)。先前在我们小组中已经报道了19F-MRI应用中由水溶性氟化配体保护的AuNP。该纳米颗粒具有适合MRI的特征,并且还能够结合疏水分子,从而使其可用于成像和药物递送。我们已经决定改善这些纳米颗粒的特性,以便具有更短的T1弛豫时间,从而在磁共振领域具有更好的性能。在本论文中,我们将在第4章中介绍有关MRI应用的三类AuNP的新的初步结果:受氟化配体保护的AuNPs,与Gd(III)络合的配体保护的AuNPs和受能够结合Gd(Fd)的氟化配体保护的AuNPs。 III)。此外,我们设计并合成了用于合成适用于1H-MRI和19F-MRI的AuNP的新硫醇。

著录项

  • 作者

    Sologan Maria;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号