首页> 外文OA文献 >Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles
【2h】

Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles

机译:一类有限时间热力循环的优化及热力性能测度

摘要

Modifications to the quasistatic Carnot cycle are developed in order to formulate improved theoretical bounds on the thermal efficiency of certain refrigeration cycles that produce finite cooling power. The modified refrigeration cycle is based on the idealized endoreversible finite time cycle. Two of the four cycle branches are reversible adiabats, and the other two are the high and low temperature branches along which finite heat fluxes couple the refrigeration cycle with external heat reservoirs.This finite time model has been used to obtain the following results: First, the performance of a finite time Carnot refrigeration cycle (FTCRC) is examined. In the special case of equal heat transfer coefficients along heat transfer branches, it is found that by optimizing the FTCRC to maximize thermal efficiency and then evaluating the efficiency at peak cooling power, a new bound on the thermal efficiency of certain refrigeration cycles is given by $epsilonsb{m} = (ildeausp2sb{m} (Tsb{H}/Tsb{L}) - 1)sp{-1},$ where $Tsb{H}$ and $Tsb{L}$ are the absolute high and low temperatures of the heat reservoirs, respectively, and $ildeausb{m}=sqrt{2}$ + 1 $simeq$ 2.41 is the dimensionless cycle period at maximum cooling power.Second, a finite time refrigeration cycle (FTRC) is optimized to obtain four distinct optimal cycling modes that maximize efficiency and cooling power, and minimize power consumption and irreversible entropy production. It is found that to first order in cycling frequency and in the special symmetric case, the maximum efficiency and minimum irreversible entropy production modes are equally efficient. Additionally, simple analytic expressions are obtained for efficiencies at maximum cooling power within each optimal mode. Under certain limiting conditions the bounding efficiency at maximum cooling power shown above is obtained.Third, the problem of imperfect heat switches linking the working fluid of an FTRC to external heat reservoirs is studied. The maximum efficiency cycling mode is obtained by numerically optimizing the FTRC. Two distinct optimum cycling conditions exist: (1) operation at the global maximum in efficiency, and (2) operation at the frequency of maximum cooling power. The efficiency evaluated at maximum cooling power, and the global maximum efficiency may provide improved bench-mark bounds on thermal efficiencies of certain real irreversible refrigeration cycles.
机译:拟准卡诺循环的改进形式是为了对某些产生有限冷却功率的制冷循环的热效率制定改进的理论界限。修改后的制冷循环基于理想化的内可逆有限时间循环。四个循环分支中的两个是可逆绝热体,另外两个是高温和低温分支,沿着这两个分支,有限的热通量将制冷循环与外部储热器耦合在一起。该有限时间模型已用于获得以下结果:检查了有限时间卡诺制冷循环(FTCRC)的性能。在沿传热分支的传热系数相等的特殊情况下,发现通过优化FTCRC以最大化热效率,然后评估峰值制冷功率下的效率,可以通过以下方式对某些制冷循环的热效率给出新的界线: $ epsilon sb {m} =( tilde tau sp2 sb {m} ((T sb {H} / T sb {L})-1) sp {-1},$其中$ T sb {H} $和$ T sb {L} $分别是储热器的绝对高温和低温,并且$ tilde tau sb {m} = sqrt {2} $ + 1 $ simeq $ 2.41是最大制冷功率下的无量纲循环周期。其次,优化了有限时间制冷循环(FTRC),以获得四种不同的最佳循环模式,这些模式可以最大程度地提高效率和制冷功率,并最大程度地减少功耗和不可逆的熵产生。发现在循环频率上处于一阶并且在特殊的对称情况下,最大效率和最小不可逆熵产生模式是同等有效的。此外,对于每种最佳模式下的最大冷却功率,可获得简单的解析表达式。在一定的限制条件下,可获得上述最大冷却功率的约束效率。第三,研究了将FTRC的工作流体连接到外部储热器的热开关不完善的问题。通过对FTRC进行数值优化可获得最大效率循环模式。存在两个截然不同的最佳循环条件:(1)以全局最高效率运行,(2)以最大冷却功率的频率运行。在最大制冷功率下评估的效率以及全局最大效率可以为某些实际不可逆制冷循环的热效率提供改进的基准界限。

著录项

  • 作者

    Walters Joseph D.;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号